【題目】一輛貨車(chē)從超市出發(fā),向東走了3km,到達(dá)小剛家,繼續(xù)向東走了4km到達(dá)小紅家,又向西走了11km到達(dá)小英家,最后回到超市。
(1)請(qǐng)以超市為原點(diǎn),以向東方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1km,畫(huà)出數(shù)軸。并在數(shù)軸上表示出小剛家、小紅家、小英家的位置;
(2)小英家距小剛家有多遠(yuǎn)?
(3)貨車(chē)一共行駛了多少千米?
【答案】(1)見(jiàn)解析;(2)7千米;(3)22千米;
【解析】
(1)以超市為原點(diǎn),以向東方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1km,依此畫(huà)出數(shù)軸,并在數(shù)軸上表示出小剛家、小紅家、小英家的位置;
(2)根據(jù)已知圖象可得;
(3)注意用絕對(duì)值來(lái)表示所走的總路程,再乘以耗油量可得答案.
(1)如圖所示:
(2)由圖知小英家距小剛家的距離為7km;
(3)貨車(chē)一共行駛了3+4+11+4=22(km).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)A(3,0),B(2,﹣3),并且以x=1為對(duì)稱(chēng)軸.
(1)求此函數(shù)的解析式;
(2)作出二次函數(shù)的大致圖象;
(3)在對(duì)稱(chēng)軸x=1上是否存在一點(diǎn)P,使△PAB中PA=PB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A.C的坐標(biāo)分別為A(1O,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC邊上運(yùn)動(dòng)。當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則點(diǎn)P的坐標(biāo)是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一張長(zhǎng)方形的紙對(duì)折,如圖所示可得到一條折痕(圖中虛線(xiàn)),繼續(xù)對(duì)折,對(duì)折時(shí)每次折痕與上次的折痕保持平行,連續(xù)對(duì)折三次后,可以得7條折痕,那么對(duì)折四次可以得到 條折痕,如果對(duì)折次,可以得到 條折痕.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考查學(xué)生的綜合素質(zhì),九年級(jí)畢業(yè)生統(tǒng)一參加理化生實(shí)踐操作科目考試。根據(jù)我市實(shí)際情況,市教育局決定:理化生實(shí)踐考查科目命制24題,分4個(gè)試題單元,每個(gè)單元內(nèi)含6道理化生實(shí)驗(yàn)操作題。即:物理3題;化學(xué)2題;生物1題。小聰與小明是某實(shí)驗(yàn)中學(xué)九年級(jí)的同班同學(xué),在三月份舉行的理化生考試中,他們同時(shí)抽到同一個(gè)試題單元,且每個(gè)同學(xué)都是同一個(gè)試題單元里隨機(jī)抽取一題。
(1)小聰抽到物理學(xué)科科目可能性有多大?
(2)用列表法或樹(shù)狀圖,求他倆同時(shí)抽到生物的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)平行四邊形的一個(gè)內(nèi)角的平分線(xiàn)分它的一邊為1:2兩部分,那么稱(chēng)這樣的平行四邊形為“協(xié)調(diào)平行四邊形”,稱(chēng)該邊為“協(xié)調(diào)邊”,當(dāng)協(xié)調(diào)邊為6時(shí),它的周長(zhǎng)為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)8+(-)-5-(-0.25); (2)|-|÷(-)×(-4)2.
(3)(-+)×(-30); (4)(-1)3-(1-)÷3×[2-(-3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折疊紙面,若在數(shù)軸上﹣1表示的點(diǎn)與5表示的點(diǎn)重合,回答以下問(wèn)題:
(1)數(shù)軸上10表示的點(diǎn)與 表示的點(diǎn)重合.
(2)若數(shù)軸上M、N兩點(diǎn)之間的距離為2018(M在N的左側(cè)),且M、N兩點(diǎn)經(jīng)折疊后重合,求M、N兩點(diǎn)表示的數(shù)是多少?
(3)如圖,邊長(zhǎng)為2的正方形有一頂點(diǎn)A落在數(shù)軸上表示﹣1的點(diǎn)處,將正方形在數(shù)軸上向右滾動(dòng)(無(wú)滑動(dòng)),正方形的一邊與數(shù)軸重合記為滾動(dòng)一次,求正方形滾動(dòng)2019次后,數(shù)軸上表示點(diǎn)A的數(shù)與折疊后的哪個(gè)數(shù)重合?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一個(gè)一元一次方程的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)的差剛好是這個(gè)方程的解,則稱(chēng)這個(gè)方程為妙解方程.例如:方程中,,方程的解為,則方程為妙解方程.請(qǐng)根據(jù)上述定義解答下列問(wèn)題:
(1)方程是妙解方程嗎?試說(shuō)明理由.
(2)已知關(guān)于的一元一次方程是妙解方程.求的值.
(3)已知關(guān)于的一元一次方程是妙解方程,并且它的解是.求代數(shù)式的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com