【題目】為了提高學生的漢字書寫能力,某學校連續(xù)舉辦了幾屆漢字聽寫大賽,今年經(jīng)過層層選拔,確定了參加決賽的選手,決賽的比賽規(guī)則是每正確聽寫出1個漢字得2分,滿分是100分,下面是根據(jù)決賽的成績繪制出的不完整的頻數(shù)分布表、扇形統(tǒng)計圖和頻數(shù)分布直方圖.
類別 | 成績x分 | 頻數(shù)(人數(shù)) |
A | 50≤x<60 | 5 |
B | 60≤x<70 | 7 |
C | 70≤x<80 | a |
D | 80≤x<90 | 15 |
E | 90≤x<100 | 10 |
請結合圖表完成下列各題
(1)表中a的值為 ,并把頻數(shù)分布直方圖補充完整;
(2)學校想利用頻數(shù)分布表估計這次決賽的平均成績,諧你直接寫出平均成績;
(3)通過與去年的決賽成績進行比較,發(fā)現(xiàn)今年各類人數(shù)的中位數(shù)有了顯著提高,提高了15%以上,求去年各類人數(shù)的中位數(shù)最高可能是多少?
(4)想從A類學生的3名女生和2名男生中選出兩人進行培訓,直接寫出選中1名男生和1名女生的概率是多少.
【答案】(1)13,圖見解析;(2)78.5;(3)去年各類人數(shù)的中位數(shù)最高可能是8;(4) .
【解析】
(1)用E點的頻數(shù)除以該組的頻率得到調查的總人數(shù),然后計算a的值,最后補全頻數(shù)分布直方圖;
(2)取組中值表示各組的平均數(shù),然后根據(jù)加權平均數(shù)的計算方法求解;
(3)根據(jù)中位數(shù)的定義得到今年各類人數(shù)的中位數(shù)為10,然后計算10÷(1+15%)≈8.7,利用人數(shù)為整數(shù)確定去年各類人數(shù)的中位數(shù)最高;
(4)畫樹狀圖展示所有20種等可能的結果數(shù),找出選中1名男生和1名女生的結果數(shù),然后根據(jù)概率公式求解.
解:(1)調查的總人數(shù)為:10÷=50,
所以a=50﹣5﹣7﹣15﹣10=13;
故答案為13;
頻數(shù)分布直方圖為:
(2)平均成績=(5×55+7×65+13×75+15×85+10×95)=78.5;
(3)今年各類人數(shù)的中位數(shù)為10,
10÷(1+15%)≈8.7,
而人數(shù)為整數(shù),今年各類人數(shù)的中位數(shù)比去年提高了15%以上,
去年各類人數(shù)的中位數(shù)最高可能是8;
(4)畫樹狀圖為:
共有20種等可能的結果數(shù),其中選中1名男生和1名女生的結果數(shù)為12,
所以選中1名男生和1名女生的概率=.
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.
求甲、乙兩種商品的每件進價;
該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】亞洲文明對話大會召開期間,大批的大學生志愿者參與服務工作.某大學計劃組織本校全體志愿者統(tǒng)一乘車去會場,若單獨調配36座新能源客車若干輛,則有2人沒有座位;若只調配22座新能源客車,則用車數(shù)量將增加4輛,并空出2個座位.
(1)計劃調配36座新能源客車多少輛?該大學共有多少名志愿者?
(2)若同時調配36座和22座兩種車型,既保證每人有座,又保證每車不空座,則兩種車型各需多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,按要求解答問題:
閱讀理解:若p、q、m為整數(shù),且三次方程 有整數(shù)解c,則將c代入方程得:,移項得:,即有: ,由于與c及m都是整數(shù),所以c是m的因數(shù).
上述過程說明:整數(shù)系數(shù)方程的整數(shù)解只可能是m的因數(shù).
例如:方程中-2的因數(shù)為±1和±2,將它們分別代入方程進行驗證得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
解決問題:
①根據(jù)上面的學習,請你確定方程的整數(shù)解只可能是哪幾個整數(shù)?
②方程 是否有整數(shù)解?若有,請求出其整數(shù)解;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關于O的位置,下列敘述何者正確?( 。
A. 在A的左邊 B. 介于A、B之間 C. 介于B、C之間 D. 在C的右邊
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,點P是BC邊上一點,連接AP,點E,F是AP上的兩點,連接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.
求證:(1)△ABF≌△DAE;
(2)DE=BF+EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某貨運公司有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨29噸,2輛大貨車與6輛小貨車一次可以運貨31噸.
I.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸;
Ⅱ.目前有46.4噸貨物需要運輸,貨運公司擬安排大小貨車共10輛,全部貨物一次運完.其中每輛大貨車一次運貨花費500元,每輛小貨車一次運貨花費300元,請問貨運公司應如何安排車輛最節(jié)省費用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)和一次函數(shù)y=kx-1的圖象相交于A(m,2m),B兩點.
(1)求一次函數(shù)的表達式;
(2)求出點B的坐標,并根據(jù)圖象直接寫出滿足不等式的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.
①當點P在直線BC的下方運動時,求△PBC的面積的最大值;
②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com