科目: 來(lái)源:2013年貴州省安順高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
如圖,已知拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,在其對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)點(diǎn)M是拋物線上一點(diǎn),以B,C,D,M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源:2013年貴州省畢節(jié)地區(qū)高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
如圖,拋物線y=ax2+b與x軸交于點(diǎn)A、B,且A點(diǎn)的坐標(biāo)為(1,0),與y軸交于點(diǎn)C(0,1).
(1)求拋物線的解析式,并求出點(diǎn)B坐標(biāo);
(2)過點(diǎn)B作BD∥CA交拋物線于點(diǎn)D,連接BC、CA、AD,求四邊形ABCD的周長(zhǎng);(結(jié)果保留根號(hào))
(3)在x軸上方的拋物線上是否存在點(diǎn)P,過點(diǎn)P作PE垂直于x軸,垂足為點(diǎn)E,使以B、P、E為頂點(diǎn)的三角形與△CBD相似?若存在請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來(lái)源:2013年貴州省六盤水高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2,若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)求經(jīng)過點(diǎn)O,C,A三點(diǎn)的拋物線的解析式.
(2)求拋物線的對(duì)稱軸與線段OB交點(diǎn)D的坐標(biāo).
(3)線段OB與拋物線交與點(diǎn)E,點(diǎn)P為線段OE上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,點(diǎn)E重合),過P點(diǎn)作y軸的平行線,交拋物線于點(diǎn)M,問:在線段OE上是否存在這樣的點(diǎn)P,使得PD=CM?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來(lái)源:2013年貴州省黔東南高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
已知拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(1,4),它與直線y2=x+1的一個(gè)交點(diǎn)的橫坐標(biāo)為2.
(1)求拋物線的解析式;
(2)在給出的坐標(biāo)系中畫出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫出使得y1≥y2的x的取值范圍;
(3)設(shè)拋物線與x軸的右邊交點(diǎn)為A,過點(diǎn)A作x軸的垂線,交直線y2=x+1于點(diǎn)B,點(diǎn)P在拋物線上,當(dāng)S△PAB≤6時(shí),求點(diǎn)P的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目: 來(lái)源:2013年貴州省黔西南高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
如圖,已知拋物線經(jīng)過A(-2,0),B(-3,3)及原點(diǎn)O,頂點(diǎn)為C
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
(3)P是拋物線上第一象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P,M,A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來(lái)源:2013年貴州省遵義高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
如圖,已知拋物線(a≠0)的頂點(diǎn)坐標(biāo)為(4,),且與y軸交于點(diǎn)C(0,2),與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線的解析式及A、B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最小,若存在,求AP+CP的最小值;若不存在,請(qǐng)說明理由;
(3)在以AB為直徑的⊙M中,CE與⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.
查看答案和解析>>
科目: 來(lái)源:2013年貴州省遵義高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
如圖,在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm.動(dòng)點(diǎn)M、N從點(diǎn)C同時(shí)出發(fā),均以每秒1 cm的速度分別沿CA、CB向終點(diǎn)A、B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2 cm的速度沿BA向終點(diǎn)A移動(dòng).連接PM、PN.設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來(lái)源:2013年河北市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
一透明的敞口正方體容器ABCD-裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖①所示).
探究如圖①,液面剛好過棱CD,并與棱B交于點(diǎn)Q,此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸如圖②所示.解決問題:
(1)CQ與BE的位置關(guān)系是________,BQ的長(zhǎng)是________dm;
(2)求液體的體積;(參考算法:直棱柱體積V液=底面積SBCQ×高AB)
(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)
拓展在圖①的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖③或圖④是其正面示意圖.若液面與棱C或CB交于點(diǎn)P,設(shè)PC=x,BQ=y.分別就圖③和圖④求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
[溫馨提示:下頁(yè)還有題!]
延伸在圖④的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長(zhǎng)方形隔板(厚度忽略不計(jì)),得到圖⑤,隔板高NM=1 dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α=60°時(shí),通過計(jì)算,判斷溢出容器的液體能否達(dá)到4 dm3.
查看答案和解析>>
科目: 來(lái)源:2013年河北市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
某公司在固定線路上運(yùn)輸,擬用運(yùn)營(yíng)指數(shù)Q量化考核司機(jī)的工作業(yè)績(jī).Q=W+100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
(1)用含x和n的式子表示Q;
(2)當(dāng)x=70,Q=450時(shí),求n的值;
(3)若n=3,要使Q最大,確定x的值;
(4)設(shè)n=2,x=40,能否在n增加m%(m>0)
同時(shí)x減少m%的情況下,而Q的值仍為420,若能,求出m的值;若不能,請(qǐng)說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-,)
查看答案和解析>>
科目: 來(lái)源:2013年黑龍江省哈爾濱市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
已知:△ABD和△CBD關(guān)于直線BD對(duì)稱(點(diǎn)A的對(duì)稱點(diǎn)是點(diǎn)C),點(diǎn)E、F分別是線段BC和線段BD上的點(diǎn),且點(diǎn)F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點(diǎn)G.
(1)圖l,求證:∠EAF=∠ABD;
(2)圖2,當(dāng)AB=AD時(shí),M是線段AG上一點(diǎn),連接BM、ED、MF,MF的延長(zhǎng)線交ED于點(diǎn)N,∠MBF=∠BAF,AF=AD,試探究線段FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com