3.某校七年級數(shù)學(xué)興趣小組對“三角形內(nèi)角或外角平分線的夾角與第三個內(nèi)角的數(shù)量關(guān)系”進行了探究
(1)如圖1,△ABC兩內(nèi)角∠ABC與∠ACB的平分線交于點E.則∠BEC=90°+$\frac{1}{2}$∠A.
(閱讀下面證明過程,并填空.)
理由:∵BE、CE分別平分∠ABC和∠ACB,
∴∠EBC=$\frac{1}{2}$∠ABC,∠ECB=$\frac{1}{2}$∠ACB(角平分線的性質(zhì))
∴∠BEC+∠EBC+∠ECB=180°(三角形內(nèi)角和定理)
∴∠BEC=180°-(∠EBC+∠ECB)
=180°-( $\frac{1}{2}$∠ABC+$\frac{1}{2}$∠ACB)=180°-$\frac{1}{2}$(∠ABC+∠ACB)
=180°-$\frac{1}{2}$(180°-∠A)
=180°-90°+$\frac{1}{2}$∠A=90°+$\frac{1}{2}$∠A
(2)如圖2,△ABC的內(nèi)角∠ABC的平分線與△ABC的外角∠ACM的平分線交于點E.
請你寫出∠BEC與∠A的數(shù)量關(guān)系,并說明理由.
答:∠BEC與∠A的數(shù)量關(guān)系式:∠A=2∠BEC.
理由:
∵BE是∠ABC的平分線,CE是∠ACM的平分線,
∴∠EBC=$\frac{1}{2}$∠ABC,∠ECM=$\frac{1}{2}$∠ACM.
∵∠ACM是△ABC的外角,∠ECM是△BCE的外角,
∴∠ACM=∠A+∠ABC,∠ECM=∠BEC+∠EBC,
∴,∠ECM=$\frac{1}{2}$∠ACM=$\frac{1}{2}$(∠A+∠ABC)=∠BEC+∠EBC,即$\frac{1}{2}$∠A+∠EBC=∠BEC+∠EBC,
∴∠A=2∠BEC..
(3)如圖3,△ABC的兩外角∠CBD與∠BCF的平分線交于點E,請你直接寫出∠BEC與∠A的數(shù)量關(guān)系,不需證明.