相關習題
 0  350252  350260  350266  350270  350276  350278  350282  350288  350290  350296  350302  350306  350308  350312  350318  350320  350326  350330  350332  350336  350338  350342  350344  350346  350347  350348  350350  350351  350352  350354  350356  350360  350362  350366  350368  350372  350378  350380  350386  350390  350392  350396  350402  350408  350410  350416  350420  350422  350428  350432  350438  350446  366461 

科目: 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AE是BC邊上的高,將△ABE沿BC方向平移,使點E與點C重合,得△GFC.
(1)求證:BE=DG;
(2)若∠B=60°,當AB與BC滿足什么數(shù)量關系時,四邊形ABFG是菱形?證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

【題目】根據(jù)算式進行計算:
(1)計算( ﹣π)0﹣6tan30°+( 2+|1﹣ |
(2)先化簡,再求值. + (其中m是絕對值最小的實數(shù))

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,將頂點為P(1,﹣2),且過原點的拋物線y的一部分沿x軸翻折并向右平移2個單位長度,得到拋物線y1 , 其頂點為P1 , 然后將拋物線y1沿x軸翻折并向右平移2個單位長度,得到拋物線y2 , 其頂點為P2;…,如此進行下去,直至得到拋物線y2016 , 則點P2016坐標為

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,以AB為直徑的⊙O與弦CD相交于點E,且AC=2,AE= ,CE=1.則 的長是(
A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如果點P(x﹣4,2x+6)在平面直角坐標系的第二象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為(
A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖: 第一步,分別以點A、D為圓心,以大于 AD的長為半徑在AD兩側(cè)作弧,交于兩點M、N;
第二步,連接MN分別交AB、AC于點E、F;
第三步,連接DE、DF.
若BD=6,AF=4,CD=3,則BE的長是(

A.2
B.4
C.6
D.8

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖.從下列四個條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個為條件,余下的一個為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,直線y= x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y= x2+bx+c經(jīng)過點B,點C的橫坐標為4.

(1)請直接寫出拋物線的解析式;
(2)如圖2,點D在拋物線上,DE∥y軸交直線AB于點E,且四邊形DFEG為矩形,設點D的橫坐標為x(0<x<4),矩形DFEG的周長為l,求l與x的函數(shù)關系式以及l(fā)的最大值;

(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1 , 點A、O、B的對應點分別是點A1、O1、B1 . 若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE= AB,連接DE.將△ADE繞點A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.

(1)問題發(fā)現(xiàn)
①當θ=0°時, =;
②當θ=180°時, =
(2)拓展探究
試判斷:當0°≤θ<360°時, 的大小有無變化?請僅就圖2的情形給出證明;

(3)問題解決
①在旋轉(zhuǎn)過程中,BE的最大值為;
②當△ADE旋轉(zhuǎn)至B、D、E三點共線時,線段CD的長為

查看答案和解析>>

科目: 來源: 題型:

【題目】問題情境
已知矩形的面積為S(S為常數(shù),S>0),當該矩形的長為多少時,它的周長最?最小值是多少?
數(shù)學模型
設該矩形的長為x,周長為y,則y與x的函數(shù)關系式為y=2(x+ )(x>0)
探索研究
(1)我們可以借鑒學習函數(shù)的經(jīng)驗,先探索函數(shù)y=x+ (x>0)的圖象性質(zhì).
①列表:

x

1

2

3

4

y

m

2

表中m=
②描點:如圖所示;

③連線:請在圖中畫出該函數(shù)的圖象
④觀察圖象,寫出兩條函數(shù)的性質(zhì);
(2)解決問題
在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)y=x+ (x>0)的最小值.
y=x+ = + = + ﹣2 +2 = +2
≥0,∴y≥2
∴當 =0,即x=1時,y最小值=2
請類比上面配方法,直接寫出“問題情境”中的問題答案.

查看答案和解析>>

同步練習冊答案