相關(guān)習(xí)題
 0  350313  350321  350327  350331  350337  350339  350343  350349  350351  350357  350363  350367  350369  350373  350379  350381  350387  350391  350393  350397  350399  350403  350405  350407  350408  350409  350411  350412  350413  350415  350417  350421  350423  350427  350429  350433  350439  350441  350447  350451  350453  350457  350463  350469  350471  350477  350481  350483  350489  350493  350499  350507  366461 

科目: 來(lái)源: 題型:

【題目】模型介紹:古希臘有一個(gè)著名的“將軍飲馬問(wèn)題”,大致內(nèi)容如下:古希臘一位將軍,每天都要巡查河岸側(cè)的兩個(gè)軍營(yíng)A、B,他總是先去A營(yíng),再到河邊飲馬,之后再去B營(yíng),如圖 ①,他時(shí)常想,怎么走才能使每天的路程之和最短呢?
大數(shù)學(xué)家海倫曾用軸對(duì)稱(chēng)的方法巧妙的解決了這問(wèn)題

如圖②,作B關(guān)于直線l的對(duì)稱(chēng)點(diǎn)B′,連接AB′與直線l交于點(diǎn)C,點(diǎn)C就是所求的位置.
請(qǐng)你在下列的閱讀、應(yīng)用的過(guò)程中,完成解答.
(1)理由:如圖③,在直線L上另取任一點(diǎn)C′,連接AC′,BC′,B′C′,
∵直線l是點(diǎn)B,B′的對(duì)稱(chēng)軸,點(diǎn)C,C′在l上
∴CB= , C′B=
∴AC+CB=AC+CB′=
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
歸納小結(jié):
本問(wèn)題實(shí)際是利用軸對(duì)稱(chēng)變換的思想,把A、B在直線的同側(cè)問(wèn)題轉(zhuǎn)化為在直線的兩側(cè),從而可利用“兩點(diǎn)之間線段最短”,即轉(zhuǎn)化為“三角形兩邊之和大于第三邊”的問(wèn)題加以解決(其中C為AB′與l的交點(diǎn),即A、C、B′三點(diǎn)共線).
本問(wèn)題可拓展為“求定直線上一動(dòng)點(diǎn)與直線外兩定點(diǎn)的距離和的最小值”問(wèn)題的數(shù)學(xué)模型.
(2)模型應(yīng)用
如圖 ④,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),F(xiàn)是AC上一動(dòng)點(diǎn).
求EF+FB的最小值
分析:解決這個(gè)問(wèn)題,可以借助上面的模型,由正方形的對(duì)稱(chēng)性可知,B與D關(guān)于直線AC對(duì)稱(chēng),連結(jié)ED交AC于F,則EF+FB的最小值就是線段的長(zhǎng)度,EF+FB的最小值是

如圖⑤,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點(diǎn)B是 的中點(diǎn),在直徑CD上找一點(diǎn)P,使BP+AP的值最小,則BP+AP的最小值是
如圖⑥,一次函數(shù)y=﹣2x+4的圖象與x,y軸分別交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C與點(diǎn)D分別為線段OA,AB的中點(diǎn),點(diǎn)P為OB上一動(dòng)點(diǎn),求:PC+PD的最小值,并寫(xiě)出取得最小值時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某公司銷(xiāo)售A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)研,確定兩條信息:
信息1:銷(xiāo)售A種產(chǎn)品所獲利潤(rùn)y:(萬(wàn)元)與銷(xiāo)售產(chǎn)品x(噸)之間存在二次函數(shù)關(guān)系,如圖所示:
信息2:銷(xiāo)售B種產(chǎn)品所獲利潤(rùn)y(萬(wàn)元)與銷(xiāo)售產(chǎn)品x(噸)之間存在正比例函數(shù)關(guān)系y2=0.3x.
根據(jù)以上信息,解答下列問(wèn)題;

(1)求二次函數(shù)解析式;
(2)該公司準(zhǔn)備購(gòu)進(jìn)A、B兩種產(chǎn)品共10噸,求銷(xiāo)售A、B兩種產(chǎn)品獲得的利潤(rùn)之和最大是多少萬(wàn)元.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知:如圖,E是正方形ABCD的對(duì)角線BD上的點(diǎn),連接AE、CE.

(1)求證:AE=CE;
(2)若將△ABE沿AB對(duì)折后得到△ABF;當(dāng)點(diǎn)E在BD的何處時(shí),四邊形AFBE是正方形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】用如圖所示的兩個(gè)轉(zhuǎn)盤(pán)進(jìn)行“配紫色”游戲,每個(gè)轉(zhuǎn)盤(pán)都被分成面積相等的三個(gè)扇形,游戲者同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),配成紫色的概率是多少?請(qǐng)用樹(shù)狀圖或列表說(shuō)明理由(藍(lán)色和紅色能配成紫色).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】計(jì)算下面各題
(1)計(jì)算:
(2)關(guān)于x一元二次方程3x2+2x﹣k=0沒(méi)有實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,圖①是一塊邊長(zhǎng)為1,周長(zhǎng)記為P1的等邊三角形紙板,沿圖①的底邊剪去一塊邊長(zhǎng)為 的等邊三角形紙板后得到圖②,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長(zhǎng)為前一塊被剪掉的等邊三角形紙板邊長(zhǎng)的 )后得到圖 ③,④…,記第n塊剪掉的等邊三角形紙板的周長(zhǎng)為Pn , 則Pn=

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=45°,AB的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)D;AC的垂直平分線交AC于點(diǎn)G,交BC與點(diǎn)F,連接AD、AF,若AC=3 ,BC=9,則DF等于(

A.
B.
C.4
D.3

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+ 與直線AB交于點(diǎn)A(﹣1,0),B(4, ),點(diǎn)D是拋物線A、B兩點(diǎn)間部分上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),直線CD與y軸平行,交直線AB于點(diǎn)C,連接AD,BD.

(1)求拋物線的表達(dá)式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知在Rt△ABC中,∠ACB=90°,現(xiàn)按如下步驟作圖:
①分別以A,C為圓心,a為半徑(a> AC)作弧,兩弧分別交于M,N兩點(diǎn);
②過(guò)M,N兩點(diǎn)作直線MN交AB于點(diǎn)D,交AC于點(diǎn)E;
③將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,設(shè)點(diǎn)D的像為點(diǎn)F.

(1)請(qǐng)?jiān)趫D中直線標(biāo)出點(diǎn)F并連接CF;
(2)求證:四邊形BCFD是平行四邊形;
(3)當(dāng)∠B為多少度時(shí),四邊形BCFD是菱形.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】學(xué)了統(tǒng)計(jì)知識(shí)后,小剛就本班同學(xué)上學(xué)“喜歡的出行方式”進(jìn)行了一次調(diào)查.圖(1)和圖(2)是他根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答以下問(wèn)題:

(1)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出“騎車(chē)”部分所對(duì)應(yīng)的圓心角的度數(shù);
(2)如果全年級(jí)共600名同學(xué),請(qǐng)估算全年級(jí)步行上學(xué)的學(xué)生人數(shù);
(3)若由3名“喜歡乘車(chē)”的學(xué)生,1名“喜歡步行”的學(xué)生,1名“喜歡騎車(chē)”的學(xué)生組隊(duì)參加一項(xiàng)活動(dòng),欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),列出所有可能的情況,并求出2人都是“喜歡乘車(chē)”的學(xué)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案