科目: 來源: 題型:
【題目】某校課外興趣小組從某市七年級學生中抽取2000人做了如下問卷調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩幅統(tǒng)計圖.
問卷
你平時喝飲料嗎?( )
A.不喝 B.喝
請選擇B選項的同學回答下面問題:
請您減少喝飲料的數(shù)量,將節(jié)省下來的錢捐給希望工程,您愿意平均每月少喝( )
A.0瓶 B.1瓶
C.2瓶 D.2瓶以上
根據(jù)上述信息,解答下列問題:
(1)求條形圖中n的值.
(2)如果每瓶飲料平均3元錢,“少喝2瓶以上”按少喝3瓶計算:
①這2000名學生一個月少喝飲料能節(jié)省多少錢捐給希望工程?
②按上述統(tǒng)計結(jié)果估計,該市七年級6萬名學生一個月少喝飲料大約能節(jié)省多少錢捐給希望工程?
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀與思考 婆羅摩笈多(Brahmagupta),是一位印度數(shù)學家和天文學家,書寫了兩部關(guān)于數(shù)學和天文學的書籍,他的一些數(shù)學成就在世界數(shù)學史上有較高的地位,他的負數(shù)概念及加減法運算僅晚于中國《九章算術(shù)》,而他的負數(shù)乘除法法則在全世界都是領(lǐng)先的,他還提出了著名的婆羅摩笈多定理,該定理的內(nèi)容及部分證明過程如下:
已知:如圖1,四邊形ABCD內(nèi)接于⊙O,對角線AC⊥BD于點P,PM⊥AB于點M,延長MP交CD于點N,求證:CN=DN.
證明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…
(1)請你閱讀婆羅摩笈多定理的證明過程,完成剩余的證明部分.
(2)已知:如圖2,△ABC內(nèi)接于⊙O,∠B=30°,∠ACB=45°,AB=2,點D在⊙O上,∠BCD=60°,連接AD,與BC交于點P,作PM⊥AB于點M,延長MP交CD于點N,則PN的長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以原點O為圓心,3為半徑的圓與x軸分別交于A,B兩點(點B在點A的右邊),P是半徑OB上一點,過P且垂直于AB的直線與⊙O分別交于C,D兩點(點C在點D的上方),直線AC,DB交于點E.若AC:CE=1:2.
(1)求點P的坐標;
(2)求過點A和點E,且頂點在直線CD上的拋物線的函數(shù)表達式.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地新建的一個企業(yè),每月將生產(chǎn)1960噸污水,為保護環(huán)境,該企業(yè)計劃購置污水處理器,并在如下兩個型號種選擇:
污水處理器型號 | A型 | B型 |
處理污水能力(噸/月) | 240 | 180 |
已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.
(1)求每臺A型、B型污水處理器的價格;
(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?
查看答案和解析>>
科目: 來源: 題型:
【題目】操作:“如圖1,P是平面直角坐標系中一點(x軸上的點除外),過點P作PC⊥x軸于點C,點C繞點P逆時針旋轉(zhuǎn)60°得到點Q.”我們將此由點P得到點Q的操作稱為點的T變換.
(1)點P(a,b)經(jīng)過T變換后得到的點Q的坐標為 ;若點M經(jīng)過T變換后得到點N(6,﹣ ),則點M的坐標為 .
(2)A是函數(shù)y= x圖象上異于原點O的任意一點,經(jīng)過T變換后得到點B.
①求經(jīng)過點O,點B的直線的函數(shù)表達式;
②如圖2,直線AB交y軸于點D,求△OAB的面積與△OAD的面積之比.
查看答案和解析>>
科目: 來源: 題型:
【題目】當k取不同的值時,y關(guān)于x的函數(shù)y=kx+2(k≠0)的圖象為總是經(jīng)過點(0,2)的直線,我們把所有這樣的直線合起來,稱為經(jīng)過點(0,2)的“直線束”.那么,下面經(jīng)過點(﹣1,2)的直線束的函數(shù)式是( 。
A. y=kx﹣2(k≠0) B. y=kx+k+2(k≠0)
C. y=kx﹣k+2(k≠0) D. y=kx+k﹣2(k≠0)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知等邊△ABC,請用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)作△ABC的外心O;
(2)設(shè)D是AB邊上一點,在圖中作出一個正六邊形DEFGHI,使點F,點H分別在邊BC和AC上.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,O為原點,直線y=kx+b交x軸于A(﹣3,0),交y軸于B,且三角形AOB的面積為6,則k=( 。
A. B. ﹣ C. ﹣4或4 D. ﹣或
查看答案和解析>>
科目: 來源: 題型:
【題目】求值:
(1)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.
(2)已知實數(shù)a、b滿足(a﹣2)2+=0,求b﹣a的算術(shù)平方根
(3)已知y=,求的值
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方形網(wǎng)格中,我們把,每個小正方形的頂點叫做格點,連接任意兩個格點的線段叫網(wǎng)格線段,以網(wǎng)格線段為邊組成的圖形叫做格點圖形,在下列如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1.
(1)請你在圖1中畫一個格點圖形,且該圖形是邊長為 的菱形;
(2)請你在圖2中用網(wǎng)格線段將其切割成若干個三角形和正方形,拼接成一個與其面積相等的正方形,并在圖3中畫出格點正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com