科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個單位,得到△A1B1C1;
②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A2B2C2 .
(2)求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實驗,他們共拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如表:
向上點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計算出現(xiàn)向上點數(shù)為6的頻率.
(2)丙說:“如果拋600次,那么出現(xiàn)向上點數(shù)為6的次數(shù)一定是100次.”請判斷丙的說法是否正確并說明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長為 的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點C的坐標(biāo)為(﹣1,0),點B在拋物線y=ax2+ax﹣2上.
(1)點A的坐標(biāo)為 , 點B的坐標(biāo)為;
(2)拋物線的解析式為;
(3)設(shè)(2)中拋物線的頂點為D,求△DBC的面積;
(4)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】將含30°角的三角板ABC如圖放置,使其三個頂點分別落在三條平行直線上,其中∠ACB=90°,當(dāng)∠1=60°時,圖中等于30°的角的個數(shù)是()
A. 6個 B. 5個 C. 4個 D. 3個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是切⊙O于A的切線,BC交⊙O于點D,E是劣弧 的中點,連接AE交BC于點F,若cosC= ,AC=6,則BF的長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖,已知∠1=∠2,∠3=∠4,求證:AC∥DF,BC∥EF.證明過程如下:
∵∠1=∠2(已知),
∴AC∥DF(A.同位角相等,兩直線平行),
∴∠3=∠5(B.內(nèi)錯角相等,兩直線平行).
又∵∠3=∠4(已知)
∴∠5=∠4(C.等量代換),
∴BC∥EF(D.內(nèi)錯角相等,兩直線平行).
上述過程中判定依據(jù)錯誤的是( )
A. A B. B C. C D. D
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=12,點D在邊BC上,且BD=4,以點D為頂點作∠EDF=∠B,分別交邊AB于點E,交AC或延長線于點F.
(1)當(dāng)AE=4時,求AF的長;
(2)當(dāng)以邊AC為直徑的⊙O與線段DE相切時,求BE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】通過學(xué)習(xí),同學(xué)們已經(jīng)體會到靈活運用乘法公式使整式的乘法運算方便、快捷.相信通過對下面材料的學(xué)習(xí)、探究,會使你大開眼界,并獲得成功的喜悅.
例:用簡便方法計算:.
解:
①
②
.
(1)例題求解過程中,第②步變形是利用___________(填乘法公式的名稱).
(2)用簡便方法計算:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,平行四邊形ABOC的對角線交于點M,雙曲線y= (x<0)經(jīng)過點B、M.若平行四邊形ABOC的面積為12,則k= .
查看答案和解析>>
科目: 來源: 題型:
【題目】深圳市地鐵9號線梅林段的一項綠化工程由甲、乙兩工程隊承擔(dān),已知乙工程隊單獨完成這項工程所需的天數(shù)是甲工程隊單獨完成所需天數(shù)的 ,甲工程隊單獨工作30天后,乙工程隊參與合做,兩隊又共同工作了36天完成.
(1)求乙工程隊單獨完成這項工作需要多少天?
(2)因工期的需要,將此項工程分成兩部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均為正整數(shù),且x<46,y<52,求甲、乙兩隊各做了多少天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com