科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過程).
查看答案和解析>>
科目: 來源: 題型:
【題目】某農(nóng)場去年計劃生產(chǎn)玉米和小麥共200噸.采用新技術(shù)后,實際產(chǎn)量為225噸,其中玉米超產(chǎn)5%,小麥超產(chǎn)15%.該農(nóng)場去年實際生產(chǎn)玉米、小麥各多少噸?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知如圖1菱形ABCD,∠ABC=60°,邊長為 3,在菱形內(nèi)作等邊三角形△AEF,邊長為2 ,點E,點F,分別在AB,AC上,以A為旋轉(zhuǎn)中心將△AEF順時針轉(zhuǎn)動,旋轉(zhuǎn)角為α,如圖2
(1)在圖2中證明BE=CF;
(2)若∠BAE=45°,求CF的長度;
(3)當(dāng)CF= 時,直接寫出旋轉(zhuǎn)角α的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】某電視臺組織知識競賽,共設(shè)20道選擇題,各題分值相同,每題必答.下表記錄了5個參賽者的得分情況.
參賽者 | 答對題數(shù) | 答錯題數(shù) | 得分 |
A | 20 | 0 | 100 |
B | 19 | 1 | 94 |
C | 18 | 2 | 88 |
D | 14 | 6 | 64 |
E | 10 | 10 | 40 |
(1)參賽者F得76分,他答對了幾道題?
(2)參賽者G說他得80分,你認(rèn)為可能嗎?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖已知∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并說明理由(根據(jù)解題的要求,在橫線處或括號內(nèi)填寫適當(dāng)?shù)膬?nèi)容或理由).
解:∠AED=∠C.
理由如下:
∵∠1+∠4=180°,∠1+∠2=180°,
∴∠2=∠4,∴AB∥EF,
∴________________(兩直線平行,內(nèi)錯角相等).
又∵∠3=∠B,∴∠B=∠ADE,
∴DE∥BC(____________________________),
∴∠AED=∠C(__________________________).
查看答案和解析>>
科目: 來源: 題型:
【題目】某文具零售店準(zhǔn)備從批發(fā)市場選購A、B兩種文具,批發(fā)價A種為12元/件,B種為8元/件.若該店零售A、B兩種文具的日銷售量y(件)與零售價x(元/件)均成一次函數(shù)關(guān)系.(如圖)
(1)求y與x的函數(shù)關(guān)系式;
(2)該店計劃這次選購A、B兩種文具的數(shù)量共100件,所花資金不超過1000元,并希望全部售完獲利不低于296元,若按A種文具每件可獲利4元和B種文具每件可獲利2元計算,則該店這次有哪幾種進貨方案?
(3)若A種文具的零售價比B種文具的零售價高2元/件,求兩種文具每天的銷售利潤W(元)與A種文具零售價x(元/件)之間的函數(shù)關(guān)系式,并說明A、B兩種文具零售價分別為多少時,每天銷售的利潤最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知:E 是∠AOB 的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接 CD,且交 OE 于點F.
(1)求證:OD=OC;
(2)求證:OE 是 CD 的垂直平分線;
(3)若∠AOB=60°,請你探究 OE,EF 之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,與∠1是同位角的是__________,與∠1是內(nèi)錯角的是__________,與∠1是同旁內(nèi)角的是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為 ,sinA= ,求BH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com