科目: 來源: 題型:
【題目】如圖,在直角坐標系內,正方形如圖擺放,已知頂點 A(a,0),B(0,b) ,則頂點C的坐標為( )
A.(-b,a b)B.(-b,b - a)C.(-a,b - a)D.(b,b -a)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關于x的方程kx2+(2k+1)x+2=0.
(1)求證:無論k取任何實數(shù)時,方程總有實數(shù)根.
(2)是否存在實數(shù)k使方程兩根的倒數(shù)和為2?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一塊矩形ABCD的空地上劃一塊四邊形MNPQ進行綠化.如圖,四邊形的頂點在矩形的邊上,且AN=AM=CP=CQ=xcm,已知矩形的邊BC=200m,邊AB=am,a為大于200的常數(shù),設四邊形MNPQ的面積為sm2
(1)求S關于x的函數(shù)關系式,并直接寫出自變量x的取值范圍.
(2)若a=400,求S的最大值,并求出此時x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】體考在即,初三(1)班的課題研究小組對本年級530名學生的體育達標情況進行調查,制作出如圖所示的統(tǒng)計圖,其中1班有50人.(注:30分以上為達標,滿分50分)根據(jù)統(tǒng)計圖,解答下面問題:
(1)初三(1)班學生體育達標率和本年級其余各班學生體育達標率各是多少?
(2)若除初三(1)班外其余班級學生體育考試成績在30﹣﹣40分的有120人,請補全扇形統(tǒng)計圖;(注:請在圖中分數(shù)段所對應的圓心角的度數(shù))
(3)如果要求全年級學生的體育達標率不低于90%,試問在本次調查中,該年級全體學生的體育達標率是否符合要求?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點的坐標是,點的坐標是,點和點關于原點對稱,點是直線位于軸右側部分圖象上一點,連接,已知.
(1)求直線的解析式;
(2)如圖2,沿著直線平移得,平移后的點與點重合.點為直線上的一動點,當的值最小時,請求出的最小值及此時點的坐標;
(3)如圖3,將沿直線是翻折得點為平面內任意一動點,在直線上是否存在一點,使得以點為頂點的四邊形是矩形;若存在,請直接寫出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)(閱讀理解)
如圖(1),AD是△ABC的中線,作△ABC的高AH.
∵AD是△ABC的中線
∴BD=CD
∵S△ABD=BDAH,S△ACD=CDAH
∴S△ABD S△ACD(填:<或>或=)
(2)(結論拓展)
△ABC中,D是BC邊上一點,若,則=
(3)(結論應用)
如圖(3),請你將△ABC分成4個面積相等的三角形(畫出分割線即可)
如圖(4),BE是△ABC的中線,F是AB邊上一點,連接CF交BE于點O,若,則= .說明你的理由
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年1月重慶湖童時裝周在重慶渝北舉行了八場走秀,云集了八大國內外潮童品牌,不僅為大家?guī)砹艘粓銎放谱咝闶,更讓人們將目光轉移到了后、后童模群體身上,開啟服裝新秀湖流.某大型商場抓住這次商機購進兩款新童裝進行試銷售,該商場用元購買款童裝,用元購買款童裝,且每件款童裝進價與每件款童裝進價相同,購買款童裝的數(shù)量比款童裝的數(shù)量少件,若該商場本次以每件款童裝按進價加價元進行銷售,每件款童裝按進價加價進行銷售,全部銷售完.
(1)求購進兩款童裝各多少件?
(2)春節(jié)期間該商場按上次進價又購進與上一次一樣數(shù)量的兩款童裝,并展開了降價促銷活動,在促銷期間,該商場將每件款童裝按進價提高進行銷售,每件款童裝按上次售價降低銷售.結果全部銷售完后銷售利潤比上次利潤少了元,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線與直線相交于點,且點的縱坐標為,直線交軸于點將直線向上平移個單位得直線,交軸于點,交直線于點且點的橫坐標為
(1)求直線的解析式;
(2)連接求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】小數(shù)在數(shù)學外小組活動中遇到這樣一個問題:如果α、β都為銳角,且tanα= ,tanβ= .求α+β的度數(shù).
(1)小敏是這樣解決問題的:如圖1,把α,β放在正方形網(wǎng)格中,使得∠ABD=α,∠CBE=β,且BA,BC在直線BD的兩側,連接AC,可證得△ABC是等腰直角三角形,因此可求得α+β=∠ABC=°.
(2)請你參考小敏思考問題的方法解決問題:如果α,β都為銳角,當tanα=4,tanβ= 時,在圖2的正方形網(wǎng)格中,利用已作出的銳角α,畫出∠MON=α﹣β,由此可得α﹣β=°.
查看答案和解析>>
科目: 來源: 題型:
【題目】(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+∠B=∠C+∠D
(簡單應用)
(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問題(1)中的結論)
(問題探究)
(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,試求∠P的度數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com