科目: 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的中垂線MN交AC于點(diǎn)D,交AB于點(diǎn)M,CE平分∠ACB,交BD于點(diǎn)E.下列結(jié)論:①BD是∠ABC的角平分線;②ΔBCD是等腰三角形;③BE=CD;④ΔAMD≌ΔBCD;⑤圖中的等腰三角形有5個。其中正確的結(jié)論是___.(填序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,直線y1=﹣x+3與x軸、y軸分別交于A、B兩點(diǎn),直線y2=﹣2x+b經(jīng)過點(diǎn)A,已知點(diǎn)C(﹣1,0),直線BC與直線y2相交于點(diǎn)D.
(1)請直接寫出:A點(diǎn)坐標(biāo)為 ,直線BC解析式為 ,D點(diǎn)坐標(biāo)為 ;
(2)若線段OA在x軸上移動,且點(diǎn)O,A移動后的對應(yīng)點(diǎn)為O1、A1,首尾順次連接點(diǎn)O1、A1、D、B構(gòu)成四邊形O1A1DB,當(dāng)四邊形O1A1DB的周長最小時,y軸上是否存在點(diǎn)M,使|A1M﹣DM|有最大值,若存在,請求出此時M的坐標(biāo);若不存在請說明理由.
(3)如圖3,過點(diǎn)D作DE∥y軸,與直線AB交于點(diǎn)E,若Q為線段AD上一動點(diǎn),將△DEQ沿邊EQ翻折得到直線AB上方的△D′EQ,是否存在點(diǎn)Q使得△D′EQ與△AEQ的重疊部分圖形為直角三角形,若存在,請求出DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A(a、b)是一次函數(shù)y=x+m的圖像與反比例函數(shù)的圖像在第一象限的交點(diǎn),且S△ABO=3。
①根據(jù)這些條件你能夠求出反比例函數(shù)的解析式嗎?如果能夠,請你求出來,如果不能,請說明理由。
②你能夠求出一次函數(shù)的函數(shù)關(guān)系式嗎?如果能,請你求出來,如果不能,請你說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,ABCD中,E為平行四邊形內(nèi)部一點(diǎn),連接AE,BE,CE.
(1)如圖1,AE⊥BC交BC于點(diǎn)F,已知∠EBC=45°,∠BAF=∠ECF,AB=,EF=1,求AD的長;
(2)如圖2,AE⊥CD交CD于點(diǎn)F,AE=CF且∠BEC=90°,G為AB上一點(diǎn),作GP⊥BE且GP=CE,并以BG為斜邊作等腰Rt△BGH,連接EP、EH.求證:EP=EH.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,P1、P2、P3、P4、P5是△DEF邊上的5個格點(diǎn),請按要求完成下列各題:
(1)試證明△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)C,D在線段AB上,△PCD是等邊三角形.
(1)當(dāng)AC,CD,DB滿足怎樣的關(guān)系時,△ACP∽△PDB?
(2)當(dāng)△ACP∽△PDB時,求∠APB的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著越來越多年輕家長對低幼階段孩子英語口語的重視,某APP順勢推出了“北美外教在線授課”系列課程,提供“A課程”、“B課程”兩種不同課程供家長選擇.已知購買“A課程”3課時與“B課程”5課時共需付款410元,購買“A課程”5課時與“B課程”3課時共需付款470元.
(1)請問購買“A課程”1課時多少元?購買“B課程”1課時多少元?
(2)根據(jù)市場調(diào)研,APP銷售“A課程”1課時獲利25元,銷售“B課程”1課時獲利20元,臨近春節(jié),小融計(jì)劃用不低于3000元且不超過3600元的壓歲錢購買兩種課程共60課時,請問購買“A課程”多少課時才使得APP的獲利最高?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD為角平分線,DE⊥AB,垂足為E.
(1)寫出圖中一對全等三角形和一對相似比不為1的相似三角形;
(2)選擇(1)中一對加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義一種新運(yùn)算:a⊕b=
(1)請寫出函數(shù)y=x⊕1的解析式,并在所給的平面直角坐標(biāo)系中畫出該函數(shù)圖象;
(2)觀察(1)中圖象,探究得到y的最小值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com