科目: 來源: 題型:
【題目】(問題情境)
如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.求證:AM=AD+MC.
(探究展示)
(2)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,試判斷AM=AD+MC是否成立?若成立,請給出證明,若不成立,請說明理由;
(拓展延伸)
(3)若(2)中矩形ABCD兩邊AB=6,BC=9,求AM的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】將一副三角板中的兩塊直角三角板的直角頂點C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,則∠ACB的度數(shù)為 .
②若∠ACB=140°,則∠DCE的度數(shù)為 .
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.
(3)當∠ACE<90°且點E在直線AC的上方時,當這兩塊三角尺有一組邊互相平行時,請直接寫出∠ACE角度所有可能的值(不必說明理由).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.
(1)若∠MOE=27°,求∠AOC的度數(shù);
(2)當∠BOD=x°(0<x<90)時,求∠MON的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E、F分別是邊AD,BC的中點.張老師請同學們將紙條的下半部分即平行四邊形ABFE沿EF翻折,得到一個V字形圖案.
(1)請你在原圖中畫出翻折后的圖形平行四邊形A′B′FE(用尺規(guī)作圖,不寫畫法,保留作圖痕跡)
(2)已知∠A=63°,求∠B′FC的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料:
在進行二次根式的化簡與運算時,我們有時會碰上如樣的式子,其實我們還可以將其進一步化簡:
(1)···(一)
(2)···(二)
(3)···(三)
以上這種化簡的步驟叫做分母有理化.
還可以用以下方法化簡:···(四)
請完成下列問題:
(1)請計算 ;
(2)當,則代數(shù)式的值為 ;
(3)請參照(三)式和(四)式用兩種不同的方法化簡
(4)化簡:
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖∠AED=∠C,∠DEF=∠B,請你說明∠1與∠2相等嗎?為什么?
解:因為∠AED=∠C(已知)
所以 ∥ ( )
所以∠B+∠BDE=180°( )
因為∠DEF=∠B(已知)
所以∠DEF+∠BDE=180°( )
所以 ∥ ( )
所以∠1=∠2( )
查看答案和解析>>
科目: 來源: 題型:
【題目】下列四個函數(shù):
①y=kx(k為常數(shù),k>0)
②y=kx+b(k,b為常數(shù),k>0)
③y=(k為常數(shù),k>0,x>0)
④y=ax2(a為常數(shù),a>0)
其中,函數(shù)y的值隨著x值得增大而減少的是( 。
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目: 來源: 題型:
【題目】畫圖,并完成填空:
已知直角三角形ABC,∠C=90°
(1)過點B作直線1平行于AC
(2)利用尺規(guī),畫出線段AC的垂直平分線EF,交AB于點E,AC于點F
(3)點A到點E的距離是線段 的長,點A到BC的距離是線段 的長,直線L與AC的距離是線段 的長
查看答案和解析>>
科目: 來源: 題型:
【題目】圖1是長方形紙帶,將紙帶沿折疊成圖2,再沿即折疊成圖3,若在圖1中∠DEF=a,則圖3中∠CFE用含有a的式子表示=_______(0<a<60°) .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).
(1)求拋物線F1所表示的二次函數(shù)的表達式;
(2)若點M是拋物線F1位于第二象限圖象上的一點,設(shè)四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時點M的坐標及S的最大值;
(3)如圖②,將拋物線F1沿y軸翻折并“復制”得到拋物線F2,點A、B與(2)中所求的點M的對應(yīng)點分別為A′、B′、M′,過點M′作M′E⊥x軸于點E,交直線A′C于點D,在x軸上是否存在點P,使得以A′、D、P為頂點的三角形與△AB′C相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com