科目: 來源: 題型:
【題目】為方便市民出行,甲、乙兩家公司推出專車服務(wù),運價收費如下:設(shè)行駛路程時,用含的代數(shù)式表示乙公司的運價.
行駛路程 | 收費標(biāo)準(zhǔn) | |
甲 | 乙 | |
不超過的部分 | 起步價6元 | 起步價7元 |
超過不超過的部分 | 每公里2.1元 | 每公里1.6元 |
超出的部分 | 每公里2.2元 |
(1)當(dāng)時,則費用表示為 元;當(dāng)時,則費用表示為 元.
(2)當(dāng)行駛路程時,對于乘客來說,哪個專車更合算,為什么?
(3)當(dāng)行駛路程時,對于乘客來說,哪個專車更合算,為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】某校實行學(xué)案式教學(xué),需印制若干份教學(xué)學(xué)案.印刷廠有,甲、乙兩種收費方式,除按印數(shù)收取印刷費外,甲種方式還需收取制版費而乙種不需要,兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的關(guān)系如圖所示.
(1)填空:甲種收費方式的函數(shù)關(guān)系式是__________,乙種收費方式的函數(shù)關(guān)系式是__________.
(2)該校某年級每次需印制100~450(含100和450)份學(xué)案,選擇哪種印刷方式較合算.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,AB=AC=AD,∠DAC=∠ABC.
(1)求證:BD平分∠ABC;
(2)若∠DAC=45°,OA=1,求OC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為:A(1,1),B(3,2),C(1,4).
(1)將△ABC先向下平移4個單位,再向右平移1個單位,畫出第二次平移后的△A1B1C1.若將△A1B1C1看成是△ABC經(jīng)過一次平移得到的,則平移距離是________.
(2)以原點為對稱中心,畫出與△ABC成中心對稱的△A2B2C2.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是( )
A. “明天降雨的概率是60%”表示明天有60%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,拋物線y=ax2﹣ax﹣4a與x軸交于A,B兩點,與y軸交于C點,A點在B點左側(cè),C點在x軸下方,且△AOC∽△COB
(1)求這條拋物線的解析式及直線BC的解析式;
(2)設(shè)點D為拋物線對稱軸上的一點,當(dāng)點D在對稱軸上運動時,是否可以與點C,A,B三點,構(gòu)成梯形的四個頂點?若可以,求出點D坐標(biāo),若不可以,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.
①求證:BD⊥CF; ②當(dāng)AB=4,AD=時,求線段BG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場準(zhǔn)備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進價各是多少元?
(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com