科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系的位置如圖所示.
請作出關(guān)于軸的對稱圖形,再作出關(guān)于軸的對稱圖形;
若點為邊上一點,則點在上的對應(yīng)點的坐標(biāo)為_ ;
點為軸上一點,且點到點的距高之和最短,請畫出圖形并寫出點的坐標(biāo)為_ .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù),它與軸交于、,且、位于原點兩側(cè),與的正半軸交于,頂點在軸右側(cè)的直線:上,則下列說法:① ② ③ ④其中正確的結(jié)論有( )
A.①②B.②③C.①②③D.①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知長方形ABCD中,AD=6cm,AB=4cm,點E為AD的中點.若點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BC上由點B向點C運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△AEP與△BPQ是否全等,請說明理由,并判斷此時線段PE和線段PQ的位置關(guān)系;
(2)若點Q的運動速度與點P的運動速度相等,運動時間為t秒,設(shè)△PEQ的面積為Scm2,請用t的代數(shù)式表示S;
(3)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△AEP與△BPQ全等?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知數(shù)軸上點表示的數(shù)為9,是數(shù)軸上一點且.動點從點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為 ()秒.
發(fā)現(xiàn):
(1)寫出數(shù)軸上點表示的數(shù) ,點表示的數(shù) (用含的代數(shù)式表示);
探究:
(2)動點從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動, 若點、同時出發(fā),問為何值時點追上點?此時點表示的數(shù)是多少?
(3)若是線段靠近點的三等分點,是線段靠近點的三等分點.點在運動的過程中, 線段的長度是否發(fā)生變化?在備用圖中畫出圖形,并說明理由.
拓展:
(4)若點是數(shù)軸上點,點表示的數(shù)是,請直接寫:的最小值是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】列方程解應(yīng)用題:
在課間活動中,小英、小麗和小敏在操場上畫出、兩個區(qū)域,一起玩投沙包游戲.沙包落在區(qū)城所得分值與落在區(qū)域所得分值不同.當(dāng)每人各投沙包四次時,其落點和四次總分如圖所示.
(1)求沙包每次落在、兩個區(qū)域的分值各是多少?
(2)請求出小敏的四次總分.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)問題背景
如圖①,BC是⊙O的直徑,點A在⊙O上,AB=AC,P為上一動點(不與B,C重合),
求證:PA=PB+PC.
請你根據(jù)小明同學(xué)的思考過程完成證明過程.
(2)類比遷移
如圖②,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB=AC,AB⊥AC,垂足為A,求OC的最小值.
(3)拓展延伸
如圖,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB=AC,AB⊥AC,垂足為A,則OC的最小值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】直線上有一點,過作射線,嘉琪將一直角三角板的直角頂點與重合.
(1)嘉琪把三角板如圖1放置,若,則 , ;
(2)嘉琪將直角三角板繞點順時針旋轉(zhuǎn)一定角度后如圖2,使平分,且,求的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】將若干枚棋子平均分成三堆(每堆至少2枚),分別放在左邊、中間、右邊,并按如下順序進行操作:
第1次:從右邊堆中拿出 2枚棋子放入中間一堆;
第2次:從左邊一堆中拿出1枚棋子放入中間一堆;
第3次:從中間一堆中拿出幾枚棋子放入右邊一堆,并使右邊一堆的棋子數(shù)為最初的2倍.
(1)操作結(jié)束后,若右邊堆比左邊一堆多15枚棋子,問共有_____枚棋子;
(2)通過計算得出:無論最初的棋子數(shù)為多少,按上述方法完成操作后,中間一堆總是剩下_____枚棋子.
查看答案和解析>>
科目: 來源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關(guān)系可以近似地看作一次函數(shù).(利潤=售價-制造成本)
(1)寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,廠商每月獲得的利潤為440萬元?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過540萬元,那么當(dāng)銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?
查看答案和解析>>