科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=88°,∠BAC的平分線與AB的垂直平分線交于點O,點E、F分別在BC、AC上,點C沿EF折疊后與點O重合,則∠DOE的度數(shù)為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1)所示為長方形紙帶,將紙帶第一次沿EF折疊成圖(2),再第二次沿BF折疊成圖(3),繼續(xù)第三次沿EF折疊成圖(4),按此操作,最后一次折疊后恰好完全蓋住∠EFB,整個過程共折疊了11次,問圖(1)中∠DEF的度數(shù)是( )
A.20°B.19°C.18°D.15°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,分別以△ABC的邊AB,AC所在直線為對稱軸作△ABC的對稱圖形△ABD和△ACE,∠BAC=150°,線段BD與CE相交于點O,連接BE、ED、DC、OA.有如下結論:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④2EA=ED;⑤BP=EQ.其中正確的結論個數(shù)為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1是AD∥BC的一張紙條,按圖1→圖2→圖3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】教材在探索平方差公式時利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導或驗證公式,俗稱“無字證明”,例如,著名的趙爽弦圖(如圖①,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2 , 也可以表示為4×ab+(a-b)2由此推導出重要的勾股定理:如果直角三角形兩條直角邊長為a,b,斜邊長為c,則a2+b2=c2 .
(1)圖②為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你利用圖②推導勾股定理.
(2)如圖③,直角△ABC中,∠ACB=90°,AC=3cm,BC=4cm,則斜邊AB上的高CD的長為多少?
(3)試構造一個圖形,使它的面積能夠解釋(a+b)(a+2b)=a2+3ab+2b2 , 畫在如圖4的網(wǎng)格中,并標出字母a、b所表示的線段.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等邊△ABC外作射線AD,使得AD和AC在直線AB的兩側,∠BAD=α(0°<α<180°),點B關于直線AD的對稱點為P,連接PB,PC.
(1)依題意補全圖1;
(2)在圖1中,求△BPC的度數(shù);
(3)直接寫出使得△PBC是等腰三角形的α的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,對于點P(x,y),我們把點P′(﹣y+1,x+1)叫做點P的伴隨點.已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An,….若點A1的坐標為(a,b),則點A2020的坐標為( )
A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)
查看答案和解析>>
科目: 來源: 題型:
【題目】問題:如圖①,在直角三角形中,,于點,可知(不需要證明);
(1)探究:如圖②,,射線在這個角的內部,點、在的邊、上,且,于點,于點.證明:;
(2)證明:如圖③,點、在的邊、上,點、在內部的射線上,、分別是、的外角。已知,.求證:;
(3)應用:如圖④,在中,,.點在邊上,,點、在線段上,.若的面積為15,則與的面積之和為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com