科目: 來源: 題型:
【題目】(問題情境)如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
(1)(問題解決)延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關系即可判斷出中線AD的取值范圍是 .
(反思感悟)解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮構造以該中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同個三角形中,從而解決問題.
(2)(嘗試應用)如圖②,△ABC中,∠BAC=90°,AD是BC邊上的中線,試猜想線段AB,AC,AD之間的數(shù)量關系,并說明理由.
(3)(拓展延伸)如圖③,△ABC中,∠BAC=90°,D是BC的中點,DM⊥DN,DM交AB于點M,DN交AC于點N,連接MN.當BM=4,MN=5,AC=6時,請直接寫出中線AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE.
(1)DE的長為 .
(2)動點P從點B出發(fā),以每秒1個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P運動的時間為t秒,求當t為何值時,△ABP和△DCE全等?
(3)若動點P從點B出發(fā),以每秒1個單位的速度僅沿著BE向終點E運動,連接DP.設點P運動的時間為t秒,是否存在t,使△PDE為等腰三角形?若存在,請直接寫出t的值;否則,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個動點(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當四邊形ADCE的周長取最小值時,求BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結AE、DE、DC
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經過P,B兩點,則k的值為______________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形OABC的邊與函數(shù)y=(x>0)圖象交于E,F(xiàn)兩點,且F是BC的中點,則四邊形ACFE的面積等于( )
A. 4 B. 6 C. 8 D. 不能確定
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCO的頂點O為坐標原點,邊CO在x軸正半軸上,∠AOC=60°,反比例函數(shù)y=(x>0)的圖象經過點A,交菱形對角線BO于點D,DE⊥x軸于點E,則CE長為( 。
A. 1 B. C. 2﹣ D. ﹣1
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經過小正方形右下頂點E.若OB2﹣BE2=8,則k的值是( )
A. 3 B. 4 C. 5 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A是雙曲線y=在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限,已知點C的位置始終在一函數(shù)圖象上運動,則這個函數(shù)解析式為( 。
A. y=﹣ B. y=﹣(x>0) C. y=﹣6x(x>0) D. y=6x(x>0)
查看答案和解析>>
科目: 來源: 題型:
【題目】若點(﹣2,y1)、(﹣1,y2)和(1,y3)分別在反比例函數(shù)y=﹣的圖象上,則下列判斷中正確的是( 。
A. y1<y2<y3 B. y3<y1<y2 C. y2<y3<y1 D. y3<y2<y1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com