【題目】如圖,正方形ABCD的中心為O , 四邊形OBEF為矩形,平面OBEF⊥平面ABCD , 點(diǎn)GAB的中點(diǎn),AB=BE=2.

(1)求證:EG∥平面ADF;
(2)求二面角O-EF-C的正弦值;
(3)設(shè)H為線段AF上的點(diǎn),且AH= HF , 求直線BH和平面CEF所成角的正弦值.

【答案】
(1)

解:證明:找到 中點(diǎn) ,連結(jié) ,

∵矩形 ,∴

是中點(diǎn),∴ 的中位線

是正方形 中心

∴四邊形 是平行四邊形


(2)

解:如圖所示建立空間直角坐標(biāo)系

, ,

設(shè)面 的法向量

得:

,

∴面 的法向量


(3)

設(shè)

得:


【解析】(1)取AD的中點(diǎn)I,連接FI,證明四邊形EFIG是平行四邊形,可得EG∥FI,利用線面平行的判定定理證明:EG∥平面ADF;
(2)建立如圖所示的坐標(biāo)系O﹣xyz,求出平面OEF的法向量,平面OEF的法向量,利用向量的夾角公式,即可求二面角O﹣EF﹣C的正弦值;
(3)求出 =(﹣ , , ),利用向量的夾角公式求出直線BH和平面CEF所成角的正弦值
【考點(diǎn)精析】關(guān)于本題考查的直線與平面平行的判定和空間角的異面直線所成的角,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體,關(guān)于其結(jié)構(gòu)特征,下列說(shuō)法不正確的是

A. 該幾何體是由兩個(gè)同底的四棱錐組成的幾何體

B. 該幾何體有12條棱、6個(gè)頂點(diǎn)

C. 該幾何體有8個(gè)面,并且各面均為三角形

D. 該幾何體有9個(gè)面,其中一個(gè)面是四邊形,其余均為三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬, 田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場(chǎng)比賽,則田忌的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為一個(gè)纜車示意圖,該纜車半徑為4.8m,圓上最低點(diǎn)與地面距離為0.8m,60秒轉(zhuǎn)動(dòng)一圈,圖中OA與地面垂直,以OA為始邊,逆時(shí)針轉(zhuǎn)動(dòng)θ角到OB,設(shè)B點(diǎn)與地面距離是h.

(1)hθ間的函數(shù)關(guān)系式;

(2)設(shè)從OA開(kāi)始轉(zhuǎn)動(dòng),經(jīng)過(guò)t秒后到達(dá)OB,求ht之間的函數(shù)關(guān)系式,并求纜車到達(dá)最高點(diǎn)時(shí)用的最少時(shí)間是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某公司生產(chǎn)某款手機(jī)的年固定成本為40萬(wàn)元,每生產(chǎn)1萬(wàn)只還需另投入16萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機(jī)萬(wàn)只并全部銷售完,每萬(wàn)只的銷售收入為萬(wàn)元,且

(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)只)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí),該公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖. 圖中A點(diǎn)表示十月的平均最高氣溫約為,B點(diǎn)表示四月的平均最低氣溫約為. 下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=tan.

(1)f(x)的定義域與最小正周期;

(2)設(shè)α,f=2cos 2α,α的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是數(shù)列的前n項(xiàng)和,并且,對(duì)任意正整數(shù)n, ;設(shè)

.

(Ⅰ) 證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;

(Ⅱ) 設(shè),求證: 數(shù)列不可能為等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B是單位圓O上的兩點(diǎn)(O為圓心),∠AOB=120°,點(diǎn)C是線段AB上不與A、B重合的動(dòng)點(diǎn).MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案