已知函數(shù) 的圖象過(guò)點(diǎn)(0, ),最小正周期為 ,且最小值為-1.
(1)求函數(shù)的解析式.
(2)若 ,的值域是 ,求m的取值范圍.

(1);(2) 

解析試題分析:(1)根據(jù)余弦函數(shù)的性質(zhì)求出最大值A(chǔ),再利用周期公式求出參數(shù),最后根據(jù)三角函數(shù)值求出的值即可.(2)由題意求出的取值范圍為,再由已知條件可確定,最后解之即可.
試題解析:(1)由函數(shù)的最小值為-1,可得A=1,因?yàn)樽钚≌芷跒?img src="http://thumb.zyjl.cn/pic5/tikupic/ea/7/ylyte3.png" style="vertical-align:middle;" /> ,所以 =3.可得,又因?yàn)楹瘮?shù)的圖象過(guò)點(diǎn)(0, ),所以,而,所以 ,
.
(2)由,可知,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9b/4/1r91b3.png" style="vertical-align:middle;" />,且cos =-1,,由余弦曲線的性質(zhì)的,,得,即.
考點(diǎn):(1)余弦函數(shù)的性質(zhì)和圖象;(2)余弦函數(shù)性質(zhì)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)函數(shù),F(x)=f(x)f′(x)+f2(x)
(Ⅰ)求F(x)的最小正周期及單調(diào)區(qū)間;
(Ⅱ)求函數(shù)F(x)在上的值域;
(Ⅲ)若f(x)=2f′(x),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的最小正周期和最值;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

的圖象關(guān)于直線對(duì)稱(chēng),其中
(1)求的解析式;
(2)將的圖象向左平移個(gè)單位,再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)后得到的圖象;若函數(shù)的圖象與的圖象有三個(gè)交點(diǎn)且交點(diǎn)的橫坐標(biāo)成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)寫(xiě)出函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),函數(shù)f(x)的最大值與最小值的和為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為坐標(biāo)原點(diǎn),向量,,,點(diǎn)滿足.
(Ⅰ)記函數(shù),,討論函數(shù)的單調(diào)性,并求其值域;
(Ⅱ)若三點(diǎn)共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)圖像的對(duì)稱(chēng)中心;
(Ⅱ)求函數(shù)在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),若的最大值為1.
(1)求的值,并求的單調(diào)遞增區(qū)間;
(2)在中,角、的對(duì)邊、,若,且,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最小值和最小正周期;
(Ⅱ)設(shè)的內(nèi)角、的對(duì)邊分別為、,滿足,,求、的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案