已知函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)函數(shù),F(x)=f(x)f′(x)+f2(x)
(Ⅰ)求F(x)的最小正周期及單調(diào)區(qū)間;
(Ⅱ)求函數(shù)F(x)在上的值域;
(Ⅲ)若f(x)=2f′(x),求的值.
(Ⅰ)T=π.單調(diào)遞增區(qū)間:單調(diào)遞減區(qū)間:
(Ⅱ)[1,1+];(Ⅲ).
解析試題分析:(I)將函數(shù)F(x)=f(x)f′(x)+f2(x)化一可得:F(x)=1+sin(2x+),由此可得F(x)的最小正周期及單調(diào)區(qū)間.(Ⅱ) 由得這樣可得sin(2x+)的范圍,從而得函數(shù)F(x)的值域.
(Ⅲ)由f(x)=2f′(x),得:sinx+cosx=2cosx-2sinx,由此可得tanx的值.
將化為只含tanx式子,將tanx.的值代入即可.
試題解析:(I)∵f′(x)=cosx-sinx,
∴F(x)=f(x)f′(x)+f2(x)=cos2x-sin2x+1+2sinxcosx=1+sin2x+cos2x=1+sin(2x+),
最小正周期為T==π.
單調(diào)遞增區(qū)間:單調(diào)遞減區(qū)間: . 4分
(Ⅱ)由得
所以,所以函數(shù)F(x)的值域?yàn)閇1,1+]. 8分
(Ⅲ)∵f(x)=2f′(x), ∴sinx+cosx=2cosx-2sinx,
∴cosx=3sinx, ∴tanx=,
∴====. 13分
考點(diǎn):1、三角變換;2、三角函數(shù)的單調(diào)性和范圍;3、三角函數(shù)同角關(guān)系式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,.
(Ⅰ)求函數(shù)的最小正周期及對稱軸方程;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是若,b=1,△ABC的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()的最小正周期為.
(Ⅰ)求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)的圖象向左平移個單位,再向上平移個單位,得到函數(shù)的圖象.求在區(qū)間上零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量a=(2cosx,2sinx),b=(cosx,cosx),設(shè)函數(shù)f(x)=a•b-,求:
(1)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若, 且α∈(,π). 求α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),若的最大值為1
(Ⅰ)求的值,并求的單調(diào)遞增區(qū)間;
(Ⅱ)在中,角、、的對邊、、,若,且,試判斷三角形的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) 的圖象過點(diǎn)(0, ),最小正周期為 ,且最小值為-1.
(1)求函數(shù)的解析式.
(2)若 ,的值域是 ,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com