已知a>0,a≠1,設(shè)p:函數(shù)內(nèi)單調(diào)遞減,q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.如果p與q有且只有一個正確,求a的取值范圍
,1(,+)
解析試題分析:當(dāng)0<a<1時,函數(shù)在(0,+)內(nèi)單調(diào)遞減.
當(dāng)a>1時,在(0,+)內(nèi)不是單調(diào)遞減函數(shù).
∴0<a<1
曲線y=x2+(2a-3)x+1與x軸交于不同的兩點等價于(2a-3)2-4>0,即或.
若p真q假,則(0,1){,11,]}=,1.
若p假q真,注意到已知a>0,a≠1,所以有
(1,+){(0,(,+)=(,+)
綜上可知,,1(,+).
考點:對數(shù)的概念 命題的判斷
點評:本題考查了對數(shù)函數(shù)的單調(diào)性、二次函數(shù)根的判定及否命題的知識.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(2)設(shè),且,若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),,其中是常數(shù),且.
(1)求函數(shù)的極值;
(2)證明:對任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對任意正數(shù)都有:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),曲線在點處的切線方程為
(1)確定的值
(2)若過點(0,2)可做曲線的三條不同切線,求的取值范圍
(3)設(shè)曲線在點處的切線都過點(0,2),證明:當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-2alnx(a>0)
(I)求函數(shù)f(x)的單調(diào)區(qū)間和最小值.
(II)若方程f(x)=2ax有唯一解,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為的函數(shù)是奇函數(shù).
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷函數(shù)的單調(diào)性;
(Ⅲ)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中,區(qū)間
(Ⅰ)求的長度(注:區(qū)間的長度定義為);
(Ⅱ)給定常數(shù),當(dāng)時,求長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) .
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若且對任意恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù),.(的圖象連續(xù)不斷)
(1) 求的單調(diào)區(qū)間;
(2) 當(dāng)時,證明:存在,使;
(3) 若存在屬于區(qū)間的,且,使,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com