【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)設(shè),若函數(shù)的兩個(gè)極值點(diǎn)恰為函數(shù)的兩個(gè)零點(diǎn),且的范圍是,求實(shí)數(shù)a的取值范圍.
【答案】(1)當(dāng)時(shí),單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間;當(dāng)時(shí),單調(diào)遞減區(qū)間為;單調(diào)遞增區(qū)間為;(2)
【解析】
(1)求解導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的分子(二次函數(shù))分類討論與的關(guān)系,從而可分析出函數(shù)的單調(diào)性;
(2)根據(jù)已知條件構(gòu)造關(guān)于的新函數(shù),根據(jù)新函數(shù)的單調(diào)性分析出的取值范圍,然后根據(jù)與的關(guān)系即可求解出的取值范圍.
解:(1)的定義域?yàn)?/span>,.
(i)若,則,當(dāng)且僅當(dāng),時(shí),
(ii)若,令得.
當(dāng)時(shí),;
當(dāng)時(shí),,
所以,當(dāng)時(shí),單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間;
當(dāng)時(shí),單調(diào)遞減區(qū)間為;
單調(diào)遞增區(qū)間為.
(2)由(1)知:且.
又,∴,
由得,
∴.
令,∴,
∴,所以在上單調(diào)遞減.
由y的取值范圍是,得t的取值范圍是,
∵,∴,
∴,
又∵,故實(shí)數(shù)a的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C上的點(diǎn)到點(diǎn)的距離與它到直線的距離之比為,圓O的方程為,曲線C與x軸的正半軸的交點(diǎn)為A,過原點(diǎn)O且異于坐標(biāo)軸的直線與曲線C交于B,C兩點(diǎn),直線AB與圓O的另一交點(diǎn)為P,直線PD與圓O的另一交點(diǎn)為Q,其中,設(shè)直線AB,AC的斜率分別為;
(1)求曲線C的方程,并證明到點(diǎn)M的距離;
(2)求的值;
(3)記直線PQ,BC的斜率分別為、,是否存在常數(shù),使得?若存在,求的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示.
(1)試估計(jì)該產(chǎn)品收益率的中位數(shù);
(2)若該產(chǎn)品的售價(jià)(元)與銷量(萬份)之間有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組與的對(duì)應(yīng)數(shù)據(jù):
售價(jià)(元) | 25 | 30 | 38 | 45 | 52 |
銷量(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
根據(jù)表中數(shù)據(jù)算出關(guān)于的線性回歸方程為,求的值;
(3)若從表中五組銷量數(shù)據(jù)中隨機(jī)抽取兩組,記其中銷量超過6萬份的組數(shù)為,求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:(為自然對(duì)數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)又本:與軸交于點(diǎn),過點(diǎn)作直線,交軸于點(diǎn),點(diǎn)滿足,的軌跡為.
(1)求的方程;
(2)已知點(diǎn),點(diǎn),過作斜率為的直線交于,兩點(diǎn),延長,分別交于,兩點(diǎn),記直線的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)將函數(shù)的圖象向右平移個(gè)單位長度,再向下平移()個(gè)單位長度后得到函數(shù)的圖象,且函數(shù)的最大值為2.
(。┣蠛瘮(shù)的解析式; (ⅱ)證明:存在無窮多個(gè)互不相同的正整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定直線:的距離比到定點(diǎn)的距離大2.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)在軸正半軸上,是否存在某個(gè)確定的點(diǎn),過該點(diǎn)的動(dòng)直線與曲線交于,兩點(diǎn),使得為定值.如果存在,求出點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy下,曲線C1的參數(shù)方程為( 為參數(shù)),曲線C1在變換T:的作用下變成曲線C2.
(1)求曲線C2的普通方程;
(2)若m>1,求曲線C2與曲線C3:y=m|x|-m的公共點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,左、右頂點(diǎn)分別為A,B,點(diǎn)M是橢圓C上異于A,B的一點(diǎn),直線AM與y軸交于點(diǎn)P.
(Ⅰ)若點(diǎn)P在橢圓C的內(nèi)部,求直線AM的斜率的取值范圍;
(Ⅱ)設(shè)橢圓C的右焦點(diǎn)為F,點(diǎn)Q在y軸上,且∠PFQ=90°,求證:AQ∥BM.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com