【題目】已知是定義在上的函數(shù),滿足.

1)證明:2是函數(shù)的周期;

2)當(dāng)時(shí),,求時(shí)的解析式,并寫出)時(shí)的解析式;

3)對于(2)中的函數(shù),若關(guān)于x的方程恰好有20個(gè)解,求實(shí)數(shù)a的取值范圍.

【答案】1)證明見解析 2)當(dāng)時(shí),,當(dāng))時(shí), 3

【解析】

1)根據(jù),代換得到得到證明.

2)當(dāng)時(shí),,則,代入化簡得到答案.

3)畫出函數(shù)圖像,根據(jù)函數(shù)的圖像與直線的交點(diǎn)個(gè)數(shù)得到答案.

1)因?yàn)?/span>,所以,

所以2是函數(shù)的周期.

2)當(dāng)時(shí),,則

,即,解得.

所以當(dāng)時(shí),,所以

的周期為2,當(dāng))時(shí),

3)作出函數(shù)的圖像,則方程解的個(gè)數(shù)就是函數(shù)的圖像與直線的交點(diǎn)個(gè)數(shù).

,則)都是方程的解,不合題意.

,則是方程的解,要使方程恰好有20個(gè)解,在區(qū)間上,9個(gè)周期,每個(gè)周期有2個(gè)解,在區(qū)間上有且僅有一個(gè)解.

解得,.,同理可得.

綜上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查一款手機(jī)的使用時(shí)間,研究人員對該款手機(jī)進(jìn)行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:

并對不同年齡層的市民對這款手機(jī)的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

愿意購買該款手機(jī)

不愿意購買該款手機(jī)

總計(jì)

40歲以下

600

40歲以上

800

1000

總計(jì)

1200

1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款手機(jī)的平均使用時(shí)間;

2)請將表格中的數(shù)據(jù)補(bǔ)充完整,并根據(jù)表中數(shù)據(jù),判斷是否有999%的把握認(rèn)為愿意購買該款手機(jī)市民的年齡有關(guān).

參考公式:,其中

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,

(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由中央電視臺綜合頻道和唯眾傳媒聯(lián)合制作的開講啦是中國首檔青年電視公開課,每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時(shí)也在討論青春中國的社會(huì)問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機(jī)調(diào)查了A、B兩個(gè)地區(qū)的100名觀眾,得到如表的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是B地區(qū)當(dāng)中非常滿意的觀眾的概率為

非常滿意

滿意

合計(jì)

A

30

15

B

合計(jì)

完成上述表格并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系;

若以抽樣調(diào)查的頻率為概率,從A地區(qū)隨機(jī)抽取3人,設(shè)抽到的觀眾非常滿意的人數(shù)為X,求X的分布列和期望.

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E :的焦距為4,兩條準(zhǔn)線間的距離為8,A,B分別為橢圓E的左、右頂點(diǎn).

(1)求橢圓E 的標(biāo)準(zhǔn)方程;

(2)已知圖中四邊形ABCD 是矩形,且BC4,點(diǎn)M,N分別在邊BCCD上,AMBN相交于第一象限內(nèi)的點(diǎn)P .①若M,N分別是BC,CD的中點(diǎn),證明:點(diǎn)P在橢圓E上;②若點(diǎn)P在橢圓E上,證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),都有成立,求的取值范圍;

(Ⅲ)試問過點(diǎn)可作多少條直線與曲線相切?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB4,AD2ECD的中點(diǎn),將△ADE沿AE折起,得到如圖2所示的四棱錐D1ABCE,其中平面D1AE⊥平面ABCE.

(1)證明:BE⊥平面D1AE

(2)設(shè)FCD1的中點(diǎn),在線段AB上是否存在一點(diǎn)M,使得MF∥平面D1AE,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個(gè)長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時(shí)底面的一條棱始終在桌面上(圖、均為容器的縱截面).

1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg ,f(1)=0,當(dāng)x>0時(shí),恒有f(x)=lgx.

(1)若不等式f(x)≤lgt的解集為A,且A(0,4],求實(shí)數(shù)t的取值范圍;

(2)若方程f(x)=lg(8x+m)的解集為,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案