【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為,
(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.
【答案】(1)(為參數(shù));(2)1
【解析】
(1)由直線的極坐標方程為,求得,進而由,代入上式得,得到直線的參數(shù)方程;
(2)根據(jù)極坐標與直角坐標的互化,求得,將直線的參數(shù)方程與的直角坐標方程聯(lián)立,利用根據(jù)與系數(shù)的關(guān)系,列出方程,即可求解.
(1)直線的極坐標方程為即,
因為為參數(shù),若,代入上式得,
所以直線的參數(shù)方程為(為參數(shù))
(2)由,得,
由,代入,得
將直線的參數(shù)方程與的直角坐標方程聯(lián)立,
得.(*)
則且,,
設(shè)點,分別對應(yīng)參數(shù),恰為上述方程的根.
則,,,
由題設(shè)得.
則有,得或.
因為,所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點到焦點的距離.
(1)求拋物線的方程;
(2)過點引圓的兩條切線,切線與拋物線的另一交點分別為,線段中點的橫坐標記為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為,,橢圓的長軸長與焦距之比為,過的直線與交于,兩點.
(1)當的斜率為時,求的面積;
(2)當線段的垂直平分線在軸上的截距最小時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時期杰出的數(shù)學(xué)家祖沖之的兒子祖暅在數(shù)學(xué)上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個平行平面之間的幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,現(xiàn)有一個圓柱體和一個長方體,它們的底面面積相等,高也相等,若長方體的底面周長為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高( )
A.有最小值B.有最大值C.有最小值D.有最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),把函數(shù)的圖象向右平移個單位,再把圖象上各點的橫坐標縮小到原來的一半,縱坐標不變,得到函數(shù)的圖象,當時,方程恰有兩個不同的實根,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當時,證明:;
(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為中心,以坐標軸為對稱軸的橢圓C經(jīng)過點M(2,1),N(,-).
(1)求橢圓C的標準方程;
(2)經(jīng)過點M作傾斜角互補的兩條直線,分別與橢圓C相交于異于M點的A,B兩點,求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線:,過點的直線的參數(shù)方程為:(為參數(shù)),直線與曲線分別交于、兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)求線段的長和的積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)A必須排在前三項執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有( )
A. 36種B. 44種C. 48種D. 54種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com