【題目】設(shè)F1(﹣c,0)、F2(c,0)是橢圓 =1(a>b>0)的兩個焦點,P是以F1F2為直徑的圓與橢圓的一個交點,若∠PF1F2=5∠PF2F1 , 則橢圓的離心率為(
A.
B.
C.
D.

【答案】B
【解析】解:∵P是以F1F2為直徑的圓與橢圓的一個交點,
∴∠F1PF2=90°
∵∠PF1F2=5∠PF2F1
∴∠PF1F2=15°,∠PF2F1=75°
∴|PF1|=|F1F2|sin∠PF2F1=2csin75°,∴|PF2|=|F1F2|sin∠PF1F2=2csin15°,
∴2a=|PF1|+|PF2|=2csin75°+2csin15°=4csin45°cos30°= c
∴a= c
∴e= =
故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017南通揚州泰州蘇北四市高三二!浚ū拘☆}滿分14分)

如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,C為橢

圓上位于第一象限內(nèi)的一點

1)若點的坐標(biāo)為,求a,b的值;

2)設(shè)A為橢圓的左頂點,B為橢圓上一點,且,求直線AB的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義一種運算ab= ,令f(x)=(3x2+6x)(2x+3﹣x2),則函數(shù)f(x)的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面坐標(biāo)系內(nèi),O為坐標(biāo)原點,向量 =(1,7), =(5,1), =(2,1),點M為直線OP上的一個動點.
(1)當(dāng) 取最小值時,求向量 的坐標(biāo);
(2)在點M滿足(I)的條件下,求∠AMB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中抽取一個容量為n的樣本.如果采用系統(tǒng)抽樣和分層抽樣方法抽取,不用剔除個體;如果樣本容量增加一個,則在采用系統(tǒng)抽樣時,需要在總體中先剔除1個個體,求樣本容量n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣ =0交M于A,B兩點,P為AB的中點,且OP的斜率為
(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017江西南昌十所重點二!選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2

(Ⅰ)求曲線C1C2的直角坐標(biāo)方程,并分別指出其曲線類型;

(Ⅱ)試判斷:曲線C1C2是否有公共點?如果有,說明公共點的個數(shù);如果沒有,請說明理由;

(Ⅲ)設(shè)是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),前n和為Sn , 且Sn= (n∈N*).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=an3n , 求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

同步練習(xí)冊答案