【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性.

(2)當(dāng)時,恒成立,求的取值范圍.

【答案】(1)見解析;(2)

【解析】

(1),設(shè),對稱軸,,討論的正負(fù)與定義域的關(guān)系,分類討論即可求解(2)由題意,恒成立,等價于,即,設(shè)恒成立,由(1)的分析,對分別討論h(x)的正負(fù)即可求解

(1)

設(shè),對稱軸,

,

①當(dāng),,得

函數(shù)上單調(diào)遞增.

②當(dāng),得

,函數(shù)上單調(diào)遞增.

③當(dāng)時,,方程有兩個實根,

,

的增區(qū)間,;減區(qū)間為

綜上時,遞增區(qū)間為,無單調(diào)遞減區(qū)間,的增區(qū)間

,;減區(qū)間為

(2)由題意,恒成立,等價于

,即

設(shè)

①由(1)知:當(dāng)時,遞增,在遞增;

時,

時,,

符合題意

②當(dāng)時,由題(1)可知在區(qū)間遞減.

當(dāng)時,,

所以不符合題意.

綜上所述:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是拋物線上一點,的焦點.

(1)若上的兩點,證明:,依次成等比數(shù)列.

(2)過作兩條互相垂直的直線與的另一個交點分別交于,(的上方),求向量軸正方向上的投影的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)實力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實現(xiàn)翻番.同時該家庭的消費結(jié)構(gòu)隨之也發(fā)生了變化,現(xiàn)統(tǒng)計了該家庭這兩年不同品類的消費額占全年總收入的比例,得到了如下折線圖:

則下列結(jié)論中正確的是( )

A. 該家庭2018年食品的消費額是2014年食品的消費額的一半

B. 該家庭2018年教育醫(yī)療的消費額與2014年教育醫(yī)療的消費額相當(dāng)

C. 該家庭2018年休閑旅游的消費額是2014年休閑旅游的消費額的五倍

D. 該家庭2018年生活用品的消費額是2014年生活用品的消費額的兩倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1,求函數(shù)的單調(diào)區(qū)間;

2若對任意的上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,MBC頂點的坐標(biāo)為A(-1,2),B(1,4),C(3,2).

(1)ΔABC外接圓E的方程;

(2)若直線經(jīng)過點(0,4),且與圓E相交所得的弦長為,求直線的方程;

(3)在圓E上是否存在點P,滿足,若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為為拋物線上位于第一象限內(nèi)的點,過點的直線交拋物線于另一點,交軸的正半軸于點

(1)若點的橫坐標(biāo)為,且與雙曲線的實軸長相等,求拋物線的方程;

(2)對于(1)中求出的拋物線,若點,記點關(guān)于軸的對稱點為(不同于點),直線軸于點

①求證:點的坐標(biāo)為;

②若,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別為橢圓的左右焦點,在橢圓上,的周長為6.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點的直線與橢圓交于,兩點,設(shè)為坐標(biāo)原點是否存在常數(shù),使得恒成立請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上周某校高三年級學(xué)生參加了數(shù)學(xué)測試,年級組織任課教師對這次考試進(jìn)行成績分析現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?/span>40分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

1)估計這次月考數(shù)學(xué)成績的平均分和眾數(shù);

2)從成績大于等于80分的學(xué)生中隨機(jī)選2名,求至少有1名學(xué)生的成績在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.

1)當(dāng)時,求l的極坐標(biāo)方程;

2)當(dāng)MC上運(yùn)動且P在線段OM上時,求P點軌跡的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案