【題目】在平面直角坐標系中,MBC頂點的坐標為A(-1,2),B(1,4),C(3,2).
(1)求ΔABC外接圓E的方程;
(2)若直線經(jīng)過點(0,4),且與圓E相交所得的弦長為,求直線的方程;
(3)在圓E上是否存在點P,滿足,若存在,求出點P的坐標;若不存在,請說明理由.
【答案】(1) ;(2) 或; (3)不存在,理由見解析.
【解析】
(1)利用待定系數(shù)法求△ABC外接圓E的方程;
(2)分類討論,利用韋達定理,結(jié)合弦長公式,求直線的方程;
(3)求出P的軌跡方程,與圓E聯(lián)立,即可得出結(jié)論.
解:(1)設(shè)圓的一般方程為,
則,解得,
∴ΔABC外接圓E的方程為;
(2)①當直線的斜率不存在時,直線的方程為,
聯(lián)立,解得或
此時弦長為,滿足題意,
②當直線的斜率存在時,設(shè)直線的方程為,即
聯(lián)立,得,
,解得或,
設(shè)直線與圓交于點E(,),點F(,),
則,
∵弦長為,
∴,
解得,
∴直線的方程為,
綜上所求:直線的方程為或;
(3)假設(shè)存在點,設(shè)出點P的坐標為(,),
∵,A(-1,2),B(1,4),
∴,即,
聯(lián)立,兩式相減得,
聯(lián)立,方程組無解,
∴圓E上不存在點P,滿足.
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓在圓:外部且與圓相切,同時還在圓:內(nèi)部與圓相切.
(1)求動圓圓心的軌跡方程;
(2)記(1)中求出的軌跡為,與軸的兩個交點分別為、,是上異于、的動點,又直線與軸交于點,直線、分別交直線于、兩點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月1日,濟南軌道交通號線試運行,濟南軌道交通集團面向廣大市民開展“參觀體驗,征求意見”活動,市民可以通過濟南地鐵APP搶票,小陳搶到了三張體驗票,準備從四位朋友小王,小張,小劉,小李中隨機選擇兩位與自己一起去參加體驗活動,則小王被選中的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的等邊三角形且垂直于底, 是的中點。
(1)證明:直線平面;
(2)點在棱上,且直線與底面所成角為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線y=2x﹣m與拋物線C:y2=2px(p>0)交于點A,B.
(1)m=p且|AB|=5,求拋物線C的方程;
(2)若m=4p,求證:OA⊥OB(O為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將參加數(shù)學競賽的500名同學編號為001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽到的號碼為005,這500名學生分別在三個考點考試,從001到200在第一考點,從201到365在第二考點,從366到500在第三考點,則第二考點被抽中的人數(shù)為____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
11分制乒乓球比賽,每贏一球得1分,當某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學進行單打比賽,假設(shè)甲發(fā)球時甲得分的概率為0.5,乙發(fā)球時甲得分的概率為0.4,各球的結(jié)果相互獨立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個球該局比賽結(jié)束.
(1)求P(X=2);
(2)求事件“X=4且甲獲勝”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com