已知線(xiàn)性變換T把點(diǎn)(1,-1)變成了點(diǎn)(1,0),把點(diǎn)(1,1)變成了點(diǎn)(0,1)
(Ⅰ)求變換T所對(duì)應(yīng)的矩陣M;
(Ⅱ)求直線(xiàn)y=-1在變換T的作用下所得到像的方程.
考點(diǎn):幾種特殊的矩陣變換
專(zhuān)題:矩陣和變換
分析:(Ⅰ)設(shè)M=
ab
cd
,代入計(jì)算即可;
(Ⅱ)由(Ⅰ)直接計(jì)算即可.
解答: 解:(Ⅰ)設(shè)M=
ab
cd
,依題意
ab
cd
1
-1
=
1
0
,
ab
cd
1
1
=
0
1
,
所以
a-b=1
c-d=0
a+b=0
c+d=1
,故有
a=
1
2
b=-
1
2
c=
1
2
d=
1
2
,從而M=
1
2
-
1
2
1
2
1
2

(Ⅱ)由
1
2
-
1
2
1
2
1
2
x
y
=
x
y
1
2
x-
1
2
y=x
1
2
x+
1
2
y=y

所以
x=x+y
y=y-x
,代入y=1得y′-x′=-1,即x′-y′-1=0
所以所求直線(xiàn)方程為x-y-1=0.
點(diǎn)評(píng):本題考查矩陣與變換等基礎(chǔ)知識(shí)與運(yùn)算求解能力,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2-
x+3
x+1
的定義域?yàn)锳,g(x)=lg[(x-a-1)(2a-x)](a<1)的定義域?yàn)锽.
(1)求A;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=
2
2
,設(shè)動(dòng)直線(xiàn)l:y=kx+m與橢圓E相切于點(diǎn)P且交直線(xiàn)x=2于點(diǎn)N,△PF1F2的周長(zhǎng)為2(
2
+1).
(1)求橢圓E的方程;
(2)求兩焦點(diǎn)F1、F2到切線(xiàn)l的距離之積;
(3)求證:以PN為直徑的圓恒過(guò)點(diǎn)F2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等腰Rt△ABC一直角邊在平面α內(nèi),斜邊與平面α成30°,則另一直角邊與平面α所成角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
4
+
y2
3
=1,F(xiàn)
為右焦點(diǎn),A為長(zhǎng)軸的左端點(diǎn),P點(diǎn)為該橢圓上的動(dòng)點(diǎn),則能夠使
PA
PF
=0
的P點(diǎn)的個(gè)數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間四邊形ABCD中,E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn),對(duì)角線(xiàn)AC=BD=2,且AC⊥BD,則四邊形EFGH的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)求函數(shù)f(x)的極值
(2)設(shè)g(x)=
1+x
a(1-x)
[xf(x)-1],若對(duì)任意x∈(0,1)恒有g(shù)(x)<-2求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)=sinωx+
3
cosωx(ω>0),f(
π
6
)+f(
π
2
)=0,且f(x)在區(qū)間(
π
6
,
π
2
),上遞減,則ω=(  )
A、3B、2C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx•cos(x-
π
6
)
+cos2x-
1
2

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對(duì)稱(chēng)中心.
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=
1
2
,b+c=3,求a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案