14.設(shè)集合A={x|x>-1},則( 。
A.∅∈AB.0∈AC.-1∈AD.{-1}⊆A

分析 直接根據(jù)集合中的條件作出判斷,0∈A.

解答 解:∵集合A={x|x>-1},
∴集合A就是由全體大于-1的數(shù)構(gòu)成的集合,
顯然,0>-1,
所以,0∈A,
故選:B.

點評 本題主要考查了元素與集合關(guān)系的判斷,符合確定集合元素條件的對象都在集合內(nèi),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=ex+$\frac{x}{x+1}$.
(1)求證:函數(shù)f(x)的唯一零點x0∈(-$\frac{1}{2}$,0);
(2)求證:對任意λ>0,存在μ<0,使得f(x)<0在(-1,λμ)上恒成立;
(3)設(shè)g(x)=f(x)-x=($\frac{1}{2}$)h(x)-1,當(dāng)x>0時,比較g(x)與h(x)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線:$\frac{sinθ}{a}$x+$\frac{cosθ}$y=1(a,b為給定的正常數(shù),θ為參數(shù),θ∈[0,2π))構(gòu)成的集合為S,給出下列命題:
①當(dāng)θ=$\frac{π}{4}$時,S中直線的斜率為$\frac{a}$;
②S中的所有直線可覆蓋整個坐標(biāo)平面.
③當(dāng)a=b時,存在某個定點,該定點到S中的所有直線的距離均相等;
其中正確的是③(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≤2\\ f(x-1),x>2\end{array}\right.$,則$f(\frac{9}{2})$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題,正確命題的個數(shù)為(  )
①若tanA•tanB>1,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC一定是等邊三角形;
④在銳角△ABC中,一定有sinA>cosB.
⑤在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若$\frac{a}{cosA}=\frac{cosB}=\frac{c}{cosC}$,則△ABC一定是等邊三角形.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.向曲線x2+y2=|x|+|y|所圍成的區(qū)域內(nèi)任投一點,這點正好落在y=1-x2與x軸所圍成區(qū)域內(nèi)的概率為$\frac{4}{3π+6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x5-m是定義在[-3-m,7-m]上的奇函數(shù),則f(m)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(cosx+sinx)2+$\sqrt{3}$cos2x-1.
(1)求f(x)的最小正周期和圖象的對稱軸方程;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在一段時間內(nèi),某種商品的價格x(單位:元)與需求量y(單位:件)之間的一組數(shù)據(jù)如表:
 價格 1416  1820  22
 需求量12  1012  5
如果y與x具有線性相關(guān)關(guān)系,求y與x的回歸直線方程.$\frac{∧}$
參考公式:$\frac{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n({\overline{x})}^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$;直線方程$\widehat{y}=\widehatx+\widehat{a}$.

查看答案和解析>>

同步練習(xí)冊答案