在直角坐標系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當AB中點為P時,求直線AB的方程;
(2)當AB中點在直線上時,求直線AB的方程.

(1);(2)

解析試題分析:(1)因為分別為直線與射線的交點, 所以可設,又點的中點,
所以有∴A、B兩點的坐標為,  4分
,   5分
所以直線AB的方程為,即   6分
(2)①當直線的斜率不存在時,則的方程為,易知兩點的坐標分別為所以的中點坐標為,顯然不在直線上,
的斜率不存在時不滿足條件.    8分
②當直線的斜率存在時,記為,易知,則直線的方程為
分別聯(lián)立
可求得兩點的坐標分別為
所以的中點坐標為   .10分
的中點在直線上,所以解得
所以直線的方程為,即    13分
考點:本題考查了直線的方程
點評:求直線方程的一般方法
(1)直接法:直接選用直線方程的其中一種形式,寫出適當?shù)闹本方程;
(2)待定系數(shù)法:先由直線滿足的一個條件設出直線方程,方程中含有一個待定系數(shù),再由題目中給出的另一條件求出待定系數(shù),最后將求得的系數(shù)代入所設方程,即得所求直線方程。簡而言之:設方程、求系數(shù)、代入。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方形中,為坐標原點,點的坐標為,點的坐標為,分別將線段十等分,分點分別記為,連接,過軸的垂線與交于點

(Ⅰ)求證:點都在同一條拋物線上,并求拋物線的方程;
(Ⅱ)過點作直線與拋物線E交于不同的兩點, 若的面積之比為4:1,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別是,Q是橢圓外的動點,滿足.點是線段與該橢圓的交點,點T是的中點.

(Ⅰ)設為點的橫坐標,證明;
(Ⅱ)求點T的軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點是直線被橢圓所截得的線段中點,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的對稱軸為坐標軸,焦點是(0,),(0,),又點在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,以坐標原點為幾點,軸的正半軸為極軸建立極坐標系.已知直線上兩點的極坐標分別為,圓的參數(shù)方程(為參數(shù)).
(Ⅰ)設為線段的中點,求直線的平面直角坐標方程;
(Ⅱ)判斷直線與圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的右焦點為,直線軸交于點,若(其中為坐標原點).
(I)求橢圓的方程;
(II)設是橢圓上的任意一點,為圓的任意一條直徑(、為直徑的兩個端點),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若直線過雙曲線的一個焦點,且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過點軸不平行的直線與雙曲線相交于不同的兩點的垂直平分線為,求直線軸上截距的取值范圍.

查看答案和解析>>

同步練習冊答案