A. | $\frac{3}{4}$ | B. | $\frac{7}{8}$ | C. | $\frac{11}{12}$ | D. | $\frac{23}{24}$ |
分析 分別取B1B、B1C1的中點M、N,連接AM、MN、AN,證明平面A1MN∥平面D1AE,可得點F的軌跡是線段MN,即可求出剩余幾何體的體積.
解答 解:分別取B1B、B1C1的中點M、N,連接AM、MN、AN,則
∵A1M∥D1E,A1M?平面D1AE,D1E?平面D1AE,∴A1M∥平面D1AE.
同理可得MN∥平面D1AE,
∵A1M、MN是平面A1MN內(nèi)的相交直線,∴平面A1MN∥平面D1AE,
由此結(jié)合A1F∥平面D1AE,可得直線A1F?平面A1MN,即點F的軌跡是線段MN,
∴${V}_{{B}_{1}-AMN}$=$\frac{1}{3}×\frac{1}{2}×1×\frac{1}{2}×\frac{1}{2}$=$\frac{1}{24}$,
∴將B1點所在的幾何體削去,剩余幾何體的體積為1-$\frac{1}{24}$=$\frac{23}{24}$,
故選:D.
點評 本題考查了空間直線與平面平行關(guān)系的判定與性質(zhì),考查棱錐的體積公式,綜合性較強,正確的作出圖形是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個單位 | B. | 向右平移$\frac{π}{6}$個單位 | ||
C. | 向右平移$\frac{π}{12}$個單位 | D. | 向左平移$\frac{π}{12}$個單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,3] | B. | $[-\frac{3}{2},3]$ | C. | $[-\frac{3}{2},-1]$ | D. | $[\frac{3}{2},3]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com