分析 由三角形中位線定理得EF∥AB,F(xiàn)G∥CD,從而得到EF∥α,F(xiàn)G∥β,由此能證明平面EFG∥α∥β.
解答 證明:∵平面α∥平面β,AB與CD是兩條異面直線且AB?α,CD?β,
E、F、G分別是AC、CB、BD的中點(diǎn),
∴EF∥AB,F(xiàn)G∥CD,
∵EF?平面α,AB?平面α,∴EF∥α,
∵FG?平面β,CD?平面β,∴FG∥β,
∵α∥β,∴EF∥α,F(xiàn)G∥α,EF∥β,F(xiàn)G∥β,
∵EF∩FG=F,
∴平面EFG∥α∥β.
點(diǎn)評 本題考查平面平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意三角形中位線定理、平行公理的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | kπ+$\frac{π}{2}$(k∈Z) | B. | kπ(k∈Z) | C. | 2kπ+$\frac{π}{2}$(k∈Z) | D. | $\frac{1}{2}kπ$(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6項(xiàng) | B. | 7項(xiàng) | C. | 8項(xiàng) | D. | 9項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45° | B. | 135° | C. | 90° | D. | 60° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com