已知拋物線C:y2=8x的焦點為F,準(zhǔn)線為l,P是l上一點,Q是直線PF與C的一個交點,若
FP
=4
FQ
,則|QF|=( 。
A、
7
2
B、3
C、
5
2
D、2
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求得直線PF的方程,與y2=8x聯(lián)立可得x=1,利用|QF|=d可求.
解答: 解:設(shè)Q到l的距離為d,則|QF|=d,
FP
=4
FQ

∴|PQ|=3d,
∴不妨設(shè)直線PF的斜率為-2
2
,
∵F(2,0),
∴直線PF的方程為y=-2
2
(x-2),
與y2=8x聯(lián)立可得x=1,
∴|QF|=d=1+2=3,
故選:B.
點評:本題考查拋物線的簡單性質(zhì),考查直線與拋物線的位置關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax+y-2=0與圓心為C的圓(x-1)2+(y-a)2=4相交于A,B兩點,且△ABC為等邊三角形,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(k,3),
b
=(1,4),
c
=(2,1)且(2
a
-3
b
)⊥
c
,則實數(shù)k=( 。
A、-
9
2
B、0
C、3
D、
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述中正確的是( 。
A、若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2-4ac≤0”
B、若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c”
C、命題“對任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”
D、l是一條直線,α,β是兩個不同的平面,若l⊥α,l⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x),g(x)的定義域都為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論中正確的是( 。
A、f(x)g(x)是偶函數(shù)
B、|f(x)|g(x)是奇函數(shù)
C、f(x)|g(x)|是奇函數(shù)
D、|f(x)g(x)|是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,雙曲線上存在一點P使得(|PF1|-|PF2|)2=b2-3ab,則該雙曲線的離心率為( 。
A、
2
B、
15
C、4
D、
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則( 。
A、p1<p2<p3
B、p2<p1<p3
C、p1<p3<p2
D、p3<p1<p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是⊙O外一點,PA是切線,A為切點,割線PBC與⊙O相交于點B,C,PC=2PA,D為PC的中點,AD的延長線交⊙O于點E,證明:
(Ⅰ)BE=EC;
(Ⅱ)AD•DE=2PB2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是等差數(shù)列,若a1+1,a3+3,a5+5構(gòu)成公比為q的等比數(shù)列,則q=
 

查看答案和解析>>

同步練習(xí)冊答案