【題目】中國(guó)傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱美,如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)A的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的優(yōu)美函數(shù),給出下列命題:

①對(duì)于任意一個(gè)圓,其優(yōu)美函數(shù)有無數(shù)個(gè);

函數(shù)可以是某個(gè)圓的優(yōu)美函數(shù);

正弦函數(shù)可以同時(shí)是無數(shù)個(gè)圓的優(yōu)美函數(shù);

函數(shù)優(yōu)美函數(shù)的充要條件為函數(shù)的圖象是中心對(duì)稱圖形.

其中正確的命題是:( )

A. ①③ B. ①③④ C. ②③ D. ①④

【答案】A

【解析】對(duì)于①,過圓心的任一直線都可以滿足要求,所以正確;對(duì)于②可以做出其圖像

故不能是某圓的優(yōu)美函數(shù);對(duì)于③,只需將圓的圓心放在正弦函數(shù)的圖像得對(duì)稱中心上即可,所以正弦函數(shù)是無數(shù)個(gè)圓的優(yōu)美函數(shù);對(duì)于④函數(shù)是中心對(duì)稱圖形時(shí),函數(shù)是優(yōu)美函數(shù),但是優(yōu)美函數(shù)不一定是中心對(duì)稱,如圖所示:

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位百萬元)之間有如下對(duì)應(yīng)數(shù)據(jù)

x

2

4

5

6

8

y

30

40

60

50

70

(1)畫出散點(diǎn)圖.

(2)求回歸方程.

(3)試預(yù)測(cè)廣告費(fèi)支出為10百萬元時(shí)銷售額多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個(gè)結(jié)果:①;②26-7;③,其中正確的結(jié)論是( 。

A. 僅有① B. 僅有② C. ②與③ D. 僅有③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實(shí)數(shù),整數(shù),

(1)證明:當(dāng)時(shí),

(2)數(shù)列滿足, ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;

(Ⅱ)若的圖象與的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,直線的參數(shù)方程為: t為參數(shù)),兩曲線相交于M,N兩點(diǎn).

)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;

)若P﹣2,﹣4),求|PM|+|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場(chǎng)所是王城公園和牡丹公園.

(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?

(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2、3、4,乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.

(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;

(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)(1, )處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅲ)已知,對(duì)于函數(shù)圖象上任意不同的兩點(diǎn),其中,直線的斜率為,記,若求證

查看答案和解析>>

同步練習(xí)冊(cè)答案