【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;

(Ⅱ)若的圖象與的圖象有3個不同的交點(diǎn),求實數(shù)的取值范圍.

【答案】(1) 的單調(diào)遞減區(qū)間: , 的單調(diào)遞增區(qū)間: ;(2) .

【解析】試題分析】(1)先求函數(shù)的導(dǎo)數(shù),再分類判斷導(dǎo)函數(shù)當(dāng)時的符號,確定單調(diào)性,進(jìn)而求出其單調(diào)區(qū)間;(2)先構(gòu)造函數(shù)= ,再求其導(dǎo)數(shù),分別求出其極大值與極小值,然后數(shù)形結(jié)合建立不等式組通過解不等式確定實數(shù)的取值范圍

解:(1)當(dāng)時,函數(shù)

求導(dǎo),得

,得

當(dāng)時, , 是單調(diào)遞增函數(shù);

當(dāng)時, 是單調(diào)遞減函數(shù);

當(dāng)時, , 是單調(diào)遞增函數(shù);

綜上所述: 的單調(diào)遞減區(qū)間:

的單調(diào)遞增區(qū)間:

(2)令=

,

當(dāng)時, 是減函數(shù);

當(dāng)時,令, 是增函數(shù);

當(dāng)時, , 是減函數(shù);

處取得極小值

處取得極大值

若函數(shù)的圖象有3個不同的交點(diǎn),則有3個不同的零點(diǎn).

,即的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正項數(shù)列的前項和,且滿足.

(Ⅰ)計算的值,猜想的通項公式,并證明你的結(jié)論;

(Ⅱ)設(shè)是數(shù)列的前項和,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知(x+n展開式的二項式系數(shù)之和為256

(1)求n;

(2)若展開式中常數(shù)項為,求m的值;

(3)若展開式中系數(shù)最大項只有第6項和第7項,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)若函數(shù)上為減函數(shù),求的最小值;

(Ⅱ)若函數(shù)為自然對數(shù)的底數(shù)),,對于任意的,恒有成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小值為,其中.

(1)的值;

(2)若對任意的,有成立,求實數(shù)的范圍;

(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)A的周長和面積同時平分的函數(shù)稱為這個圓的優(yōu)美函數(shù),給出下列命題:

①對于任意一個圓,其優(yōu)美函數(shù)有無數(shù)個;

函數(shù)可以是某個圓的優(yōu)美函數(shù)

正弦函數(shù)可以同時是無數(shù)個圓的優(yōu)美函數(shù);

函數(shù)優(yōu)美函數(shù)的充要條件為函數(shù)的圖象是中心對稱圖形.

其中正確的命題是:( )

A. ①③ B. ①③④ C. ②③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,新街口某新開業(yè)的商場在過去一個月內(nèi)(以30天計),顧客人數(shù)(千人)與時間(天)的函數(shù)關(guān)系近似滿足),人均消費(fèi)(元)與時間(天)的函數(shù)關(guān)系近似滿足

(1)求該商場的日收益(千元)與時間(天)(, )的函數(shù)關(guān)系式;

(2)求該商場日收益的最小值(千元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶為“A組”,否則為“B組”,調(diào)查結(jié)果如下:

A組

B組

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“A組”用戶與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“A組”和“B組”的人數(shù);

(3)從(2)中抽取的5人中再隨機(jī)抽取2人贈送200元的護(hù)膚品套裝,求這2人中至少有1人在“A組”的概率.

參考公式:K2=,其中n=a+b+c+d為樣本容量.

參考數(shù)據(jù):

P(K2k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為函數(shù)圖象上一點(diǎn), 為坐標(biāo)原點(diǎn),記直線的斜率

1)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;

2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;

3)求證:

查看答案和解析>>

同步練習(xí)冊答案