【題目】下列命題正確的是( )
A.若 ,則 =0
B.若 = ,則 =
C.若 ∥ , ∥ ,則 ∥
D.若 與 是單位向量,則 =1
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓+=1的左、右焦點分別為F1,F(xiàn)2,一條直線經(jīng)過點F1與橢圓交于A,B兩點.
(1)求△ABF2的周長;
(2)若的傾斜角為,求弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個幾何體的三視圖如圖所示.
(1)求此幾何體的表面積;
(2)如果點在正視圖中所示位置:為所在線段中點,為頂點,求在幾何體表面上,從點到點的最短路徑的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0,0≤≤π)為偶函數(shù),其圖象上相鄰的兩個最高點之間的距離為2π.
(1)求f(x)的解析式;
(2)若 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,點P,G分別是AD,EF的中點,已知平面ABC,AD=EF=3,DE=DF=2.
(Ⅰ)求證:DG⊥平面BCEF;
(Ⅱ)求PE與平面BCEF 所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
已知從全部105人中隨機抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表:若按的可靠性要求,根據(jù)列聯(lián)表的數(shù)據(jù),能否認(rèn)為“成績與班級有關(guān)系”;
(2)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到10號的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為,動點、在棱上,動點,分別在棱,上,若,,,(,,大于零),則四面體的體積( ).
A. 與,,都有關(guān) B. 與有關(guān),與,無關(guān)
C. 與有關(guān),與,無關(guān) D. 與有關(guān),與,無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠有4臺大型機器,在一個月中,一臺機器至多出現(xiàn)1次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進(jìn)行維修,每臺機器出現(xiàn)故障需要維修的概率為.
(1)若出現(xiàn)故障的機器臺數(shù)為,求的分布列;
(2) 該廠至少有多少名工人才能保證每臺機器在任何時刻同時出現(xiàn)故障時能及時進(jìn)行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將五個1,五個2,五個3,五個4,五個5共25個數(shù)填入一個5行5列的表格內(nèi)(每格填入一個數(shù)),使得同一行中任何兩數(shù)之差的絕對值不超過2,考查每行中五個數(shù)之和,記這五個和的最小值為,則的最大值為( )
A. B. 9 C. 10 D. 11
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com