【題目】已知F為橢圓C:的左焦點,過F作兩條互相垂直的直線,,直線與C交于A,B兩點,直線與C交于D,E兩點,則四邊形ADBE的面積最小值為( )
A.4B.C.D.
【答案】C
【解析】
先計算直線斜率為0時或直線斜率為0時對應(yīng)的四邊形的面積,再設(shè)斜率為k,利用弦長公式計算,,得出四邊形的面積關(guān)于k的函數(shù),利用換元法求出面積的最小值從而得出結(jié)論.
橢圓的左焦點為.
(1)當直線斜率為0時,直線的方程為,
或當直線斜率為0時,直線的方程為,
把代入橢圓方程得,
四邊形ADBE的面積為.
(2)當直線有斜率且斜率不為0時,設(shè)直線的方程為,直線的方程為.
聯(lián)立方程組,消元得:,
設(shè),,則,,
,
用替換k可得,
四邊形ADBE的面積為,
令,則,
當即時,S取得最小值.
綜上,四邊形ABDE的面積的最小值為.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】到2020年,我國將全面建立起新的高考制度,新高考采用模式,其中語文、數(shù)學、英語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學校采用分層抽樣的方法從高一年級1000名(其中男生550名,女生450名)學生中抽取了名學生進行調(diào)查.
(1)已知抽取的名學生中有女生45名,求的值及抽取的男生的人數(shù).
(2)該校計劃在高一上學期開設(shè)選修中的“物理”和“地理”兩個科目,為了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調(diào)查(假定每名學生在這兩個科目中必須選擇一個科目,且只能選擇一個科目),得到如下列聯(lián)表.
選擇“物理” | 選擇“地理” | 總計 | |
男生 | 10 | ||
女生 | 25 | ||
總計 |
(i)請將列聯(lián)表補充完整,并判斷是否有以上的把握認為選擇科目與性別有關(guān)系.
(ii)在抽取的選擇“地理”的學生中按性別分層抽樣抽取6名,再從這6名學生中抽取2名,求這2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | n | ||
第3組 | 30 | p | |
第4組 | 20 | ||
第5組 | 10 | ||
合計 | 100 |
(1)求頻率分布表中n,p的值,完善頻率分布直方圖并估計該組數(shù)據(jù)的中位數(shù)保留l位小數(shù);
(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學生進入第二輪面試,學校決定從這6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有1名學生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)命題p:實數(shù)m滿足使方程1,其中a>0為雙曲線:命題q:實數(shù)m滿足.
(1)若a=1且p∧q為真,求實數(shù)m的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓M經(jīng)過點F(1,0),且與直線l:x=﹣1相切,動圓圓心M的軌跡記為曲線C
(1)求曲線C的軌跡方程
(2)若點P在y軸左側(cè)(不含y軸)一點,曲線C上存在不同的兩點A、B,滿足PA,PB的中點都在曲線C上,設(shè)AB中點為E,證明:PE垂直于y軸.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為研究學生語言學科的學習情況,現(xiàn)對高二200名學生英語和語文某次考試成績進行抽樣分析. 將200名學生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學生,將10名學生的兩科成績(單位:分)繪成折線圖如下:
(Ⅰ)若第一段抽取的學生編號是006,寫出第五段抽取的學生編號;
(Ⅱ)在這兩科成績差超過20分的學生中隨機抽取2人進行訪談,求2人成績均是語文成績高于英語成績的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級學生的語文和英語兩科成績,寫出你的結(jié)論和理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù) 部分圖象如圖所示.
(1)求的最小正周期及解析式;
(2)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,點A(2,y0)為拋物線上一點,且|AF|=4.
(1)求拋物線的方程;
(2)直線l:y=x+m與拋物線交于不同兩點P,Q,若,其中O為坐標原點,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)如圖,長方形材料中,已知,.點為材料內(nèi)部一點,于,于,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊,上.
(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;
(2)試確定點在上的位置,使得四邊形材料的面積最小,并求出其最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com