【題目】已知?jiǎng)訄AM經(jīng)過點(diǎn)F(1,0),且與直線l:x=﹣1相切,動(dòng)圓圓心M的軌跡記為曲線C
(1)求曲線C的軌跡方程
(2)若點(diǎn)P在y軸左側(cè)(不含y軸)一點(diǎn),曲線C上存在不同的兩點(diǎn)A、B,滿足PA,PB的中點(diǎn)都在曲線C上,設(shè)AB中點(diǎn)為E,證明:PE垂直于y軸.
【答案】(1)y2=4x(2)證明見解析
【解析】
(1)利用圓的半徑相等列式化簡方程即可.
(2)設(shè)A(,y1),B(,y2),再求得中點(diǎn),代入拋物線方程,再利用方程的根方法求解即可.
(1)設(shè)圓心M的坐標(biāo)(x,y),由題意得:|MF|等于到直線l的距離,∴|x+1|整理得:y2=4x,
所以曲線C的軌跡方程為:y2=4x;
(2)設(shè)P(x0,y0),由(1)設(shè)A(,y1),B(,y2),
AB的中點(diǎn)E(xE,yE),則yE,
因?yàn)?/span>PA的中點(diǎn)在拋物線上,
所以()2=4,即:y12﹣2y0y1+8x0﹣y02=0;
同理可得PB的中點(diǎn)也在拋物線上可得:y22﹣2y0y2+8x0﹣y02=0,
所以y1,y2是方程:y2﹣2y0y+8x0﹣y02=0兩個(gè)不同的根,
∴y1+y2=2y0,
所以yE=y0,
∴P與E的縱坐標(biāo)相同,
所以PE垂直于y軸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,A是橢圓短軸的一個(gè)端點(diǎn),直線AF與橢圓另一交點(diǎn)為B,且.
(1)求橢圓方程;
(2)若斜率為1的直線l交橢圓于C,D,且CD為底邊的等腰三角形的頂點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線交于點(diǎn),曲線與軸交于點(diǎn),求線段的中點(diǎn)到點(diǎn)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了分析某個(gè)高三學(xué)生的學(xué)習(xí)狀態(tài).現(xiàn)對(duì)他前5次考試的數(shù)學(xué)成績x,物理成績y進(jìn)行分析.下面是該生前5次考試的成績.
數(shù)學(xué) | 120 | 118 | 116 | 122 | 124 |
物理 | 79 | 79 | 77 | 82 | 83 |
附..
已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,求物理成績y與數(shù)學(xué)成績x的回歸直線方程;
我們常用來刻畫回歸的效果,其中越接近于1,表示回歸效果越好.求.
已知第6次考試該生的數(shù)學(xué)成績達(dá)到132,請(qǐng)你估計(jì)第6次考試他的物理成績大約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2018年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,折合成標(biāo)準(zhǔn)分后,最高分是10分.按成績共分成五組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),得到的頻率分布直方圖如圖所示:
(1)分別求第三,四,五組的頻率;
(2)該學(xué)校在第三,四,五組中用分層抽樣的方法抽取6名同學(xué).
①已知甲同學(xué)和乙同學(xué)均在第三組,求甲、乙同時(shí)被選中的概率
②若在這6名同學(xué)中隨機(jī)抽取2名,設(shè)第4組中有X名同學(xué),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為橢圓C:的左焦點(diǎn),過F作兩條互相垂直的直線,,直線與C交于A,B兩點(diǎn),直線與C交于D,E兩點(diǎn),則四邊形ADBE的面積最小值為( )
A.4B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左右焦點(diǎn)分別為,,在橢圓L上的點(diǎn)滿足,且,,成等差數(shù)列.
(1)求橢圓L的方程;
(2)過點(diǎn)A作兩條傾斜角互補(bǔ)的直線,,它們與橢圓L的另一個(gè)交點(diǎn)分別為B,C,試問直線BC的斜率是否是定值?若是,求出該斜率;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.為曲線上的動(dòng)點(diǎn),點(diǎn)在射線上,且滿足.
(Ⅰ)求點(diǎn)的軌跡的直角坐標(biāo)方程;
(Ⅱ)設(shè)與軸交于點(diǎn),過點(diǎn)且傾斜角為的直線與相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面選項(xiàng)中錯(cuò)誤的有( )
A.命題“若,則”的否命題為:“若,則”
B.“”是“”的充分不必要條件
C.命題“,使得”的否定是“,均有”
D.命題“若,則”的逆否命題為真命題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com