已知等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1+b1=3,a2+b2=7,a3+b3=15,a4+b4=35,則an+bn=
 
.(n∈N*
考點:等比數(shù)列的性質,數(shù)列的求和,等差數(shù)列的性質
專題:計算題,等差數(shù)列與等比數(shù)列
分析:分別利用等差數(shù)列的首 項a1,公差d,等比數(shù)列的首項b1及公比q表示已知條件,然后解方程可求a1,b1,d,q,然后結合等差與等比的通項即可求解.
解答: 解:∵a1+b1=3,①
a2+b2=a1+d+b1q=7,②
a3+b3=a1+2d+b1q2=15,③
a4+b4=a1+3d+b1q3=35④
②-①可得,4-d=b1(q-1)
③-②可得,8-d=b1q(q-1)
④-③可得,20-d=b1q2(q-1)
解方程可求d=2,q=3,b1=1,a1=2
∴an+bn=3n-1+2n.
故答案為:3n-1+2n.
點評:本題主要考查了等差數(shù)列與等比數(shù)列的通項公式的應用,解決本題的關鍵是求解方程的技巧
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,E、F分別是BB1,CD的中點,求證:平面ADE⊥平面A1FD1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(x-a)2
lnx
(其中a為常數(shù)).
(1)當a=0時,求函數(shù)的單調區(qū)間;
(2)當a=1時,對于任意大于1的實數(shù)x,恒有f(x)≥k成立,求實數(shù)k的取值范圍;
(3)當0<a<1時,設函數(shù)f(x)的3個極值點為x1,x2,x3,且x1<x2<x3,求證:x1+x3
2
e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
i
j
是夾角為60°的單位向量,關于實數(shù)x的方程
i
x2+
j
x+
n
=0有解,則
i
n
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
sinx+(x+1)2
x2+1
的最大值為M,最小值為m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-x
-
x+3
的最大值為M,最小值為m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|1+lgx|.若a≠b且f(a)=f(b),則a+b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面α∥平面β,A,C∈α,點B,D∈β,直線AB,CD相交于P,已知AP=8,BP=9,CP=16,則CD=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=-x•ex,則下列命題正確的是( 。
A、?a∈(-∞,
1
e
),?x∈R,f(x)>a
B、?a∈(
1
e
,+∞),?x∈R,f(x)>a
C、?x∈R,?a∈(-∞,
1
e
),f(x)>a
D、?x∈R,?a∈(
1
e
,+∞),f(x)>a

查看答案和解析>>

同步練習冊答案