【題目】在如圖所示的幾何體中,的中點(diǎn),.

1)已知,求證:平面;

2)已知分別是的中點(diǎn),求證:平面.

【答案】(1)詳見解析;(2)詳見解析.

【解析】試題分析:(1)根據(jù),所以平面就是平面,連接DF,AC是等腰三角形ABCACF的公共底邊,點(diǎn)DAC的中點(diǎn),所以,,即證得平面的條件;(2)要證明線面平行,可先證明面面平行,取的中點(diǎn)為,連接,,根據(jù)中位線證明平面平面,即可證明結(jié)論.

試題解析:證明:(1,確定平面.

如圖,連結(jié). ∵,的中點(diǎn),.同理可得.

平面,平面,即平面.

2)如圖,設(shè)的中點(diǎn)為,連接,.

中,分別是的中點(diǎn),.

,.

中,分別是的中點(diǎn),.

,平面平面.

平面,平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題中:

在回歸分析中, 可用相關(guān)指數(shù)的值判斷的擬合效果,越大,模型的擬合效果越好;

兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近

若數(shù)據(jù)的方差為,則的方差為;

對(duì)分類變量的隨機(jī)變量的觀測(cè)值來說, 越小,判斷有關(guān)系的把握程度越大

其中真命題的個(gè)數(shù)為

A B C D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C、F是⊙O上的兩點(diǎn),OC⊥AB,過點(diǎn)F作⊙O的切線FD交AB的延長(zhǎng)線于點(diǎn)D.連接CF交AB于點(diǎn)E.

(1)求證:DE2=DBDA;

(2)若DB=2,DF=4,試求CE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為

1求橢圓的方程;

2斜率為的直線過橢圓的右焦點(diǎn),且與橢圓交與兩點(diǎn),過線段的中點(diǎn)與垂直的直線交直線點(diǎn),若為等邊三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“銀發(fā)浪潮”的涌來,養(yǎng)老是當(dāng)下普遍關(guān)注的熱點(diǎn)和難點(diǎn)問題,某市創(chuàng)新性的采用“公建民營(yíng)”的模式,建立標(biāo)準(zhǔn)的“日間照料中心”,既吸引社會(huì)力量廣泛參與養(yǎng)老建設(shè),也方便規(guī)范化管理,計(jì)劃從中抽取5個(gè)中心進(jìn)行評(píng)估,現(xiàn)將所有中心隨機(jī)編號(hào),用系統(tǒng)(等距)抽樣的方法抽取,已知抽取到的號(hào)碼有5號(hào)23號(hào)和29號(hào),則下面號(hào)碼中可能被抽到的號(hào)碼是( )

A. 9 B. 12 C. 15 D. 17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是平行四邊形,平面,,,,,的中點(diǎn).

1)求證:平面;

2)求證:平面平面;

3)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為(萬元),其中固定成本為2萬元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬元(總成本固定成本+生產(chǎn)成本),銷售收入,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問題

(1)寫出利潤(rùn)函數(shù)的解析式(利潤(rùn)銷售收入總成本);

(2)甲廠生產(chǎn)多少臺(tái)新產(chǎn)品時(shí),可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),,圓是以的中點(diǎn)為圓心,為半徑的圓.

(1)若圓的切線在軸和軸上截距相等,求切線方程;

(2)若是圓外一點(diǎn),從向圓引切線,為切點(diǎn),為坐標(biāo)原點(diǎn),,求使最小的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)當(dāng)時(shí),求證:

(2)當(dāng)函數(shù)與函數(shù)有且僅有一個(gè)交點(diǎn),求的值;

(3)討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案