【題目】如圖,直角梯形中, ,等腰梯形中, ,且平面平面.
(1)求證: 平面;
(2)若與平面所成角為,求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:
(1)直接利用面面垂直的性質(zhì)定理可證;
(2)設(shè),計算后可證OF//BE,從而由已知可證OF⊥平面ABCD,因此可以OA,OB,OF為坐標軸建立空要間直角坐標系,利用向量法求二面角.
試題解析:
(1)∵平面平面, ,平面平面,
又平面,∴平面;
(2)設(shè),∵四邊形為等腰梯形, ,
∴,
∵,∴四邊形為平行四邊形,∴,
又∵平面,∴平面,
∴為與平面所成的角,∴,
又∵,∴,
以為原點, 為軸, 為軸, 為軸,建立空間直角坐標系,
則, ,
∵平面,∴平面的法向量為,
設(shè)平面的一個法向量為,
由得,令得, ,
,∴二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)若,求函數(shù)在的切線方程;
(2)若函數(shù)在上為單調(diào)遞減函數(shù),求實數(shù)的最小值;
(3)若存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若直線與曲線的交點的橫坐標為,且,求整數(shù)所有可能的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機”弘揚傳統(tǒng)文化,某市大約10萬名市民進行了漢字聽寫測試.現(xiàn)從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在到之間,將測試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為研究學生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名高三學生平均每天課外體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
將學生日均課外體育鍛煉時間在的學生評價為“課外體育達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
課外體育不達標 | 課外體育達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(2)通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關(guān)?
參考格式:,其中
0.025 | 0.15 | 0.10 | 0.005 | 0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 2.072 | 6.635 | 7.879 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】最近,“百萬英雄”,“沖頂大會”等一些闖關(guān)答題類游戲風靡全國,既能答題,又能學知識,還能掙獎金。若某闖關(guān)答題一輪共有4類題型,選手從前往后逐類回答,若中途回答錯誤,立馬淘汰只能觀戰(zhàn);若能堅持到4類題型全部回答正確,就能分得現(xiàn)金并獲得一枚復(fù)活幣。每一輪闖關(guān)答題順序為:1.文史常識類;2.數(shù)理常識類;3.生活常識類;4.影視藝術(shù)常識類,現(xiàn)從全省高中生中調(diào)查了100位同學的答題情況統(tǒng)計如下表:
(Ⅰ)現(xiàn)用樣本的數(shù)據(jù)特征估算整體的數(shù)據(jù)特征,從全省高中生挑選4位同學,記為4位同學獲得獎金的總?cè)藬?shù),求的分布列和期望.
(Ⅱ)若王同學某輪闖關(guān)獲得的復(fù)活幣,系統(tǒng)會在下一輪游戲中自動使用,即下一輪重新進行闖關(guān)答題時,若王同學在某一類題型中回答錯誤,自動復(fù)活一次,視為答對該類題型。請問:仍用樣本的數(shù)據(jù)特征估算王同學的數(shù)據(jù)特征,那么王同學在獲得復(fù)活幣的下一輪答題游戲中能夠最終獲得獎金的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直角三角形中,是的中點,是線段上一個動點,且,如圖所示,沿將翻折至,使得平面平面.
(1)當時,證明:平面;
(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com