△ABC利用斜二測畫法得到的水平放置的直觀圖△A′B′C′,其中A′B′∥y′軸,B′C′∥x′軸,若△A′B′C′的面積是3,則△ABC的面積是
 
考點:平面圖形的直觀圖
專題:空間位置關(guān)系與距離
分析:利用
S直觀圖
S原圖
=
2
4
,直接求解.
解答: 解:∵
S直觀圖
S原圖
=
2
4
,
且△A′B′C′的面積是3,
3
S△ABC
=
2
4
,
∴△ABC的面積是6
2

故答案為:6
2
點評:本題考查三角形面積的求法,是基礎(chǔ)題,解題時要注意斜二測法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

直線l過點M(1,1),與橢圓
x2
4
+
y2
3
=1相交于A、B兩點,若AB的中點為M,試求:
(1)直線l的方程.
(2)求弦長AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向平面區(qū)域{(x,y)|0≤x≤2,0≤y≤1}.內(nèi)隨機投入一點,則該點落在曲線y=
x2(0≤x≤1)
2-x(1<x≤2)
下方的概率等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知[x]表示不超過實數(shù)x的最大整數(shù)(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定義F(x)=x-[x],給出如下命題:
①使[x+1]=3成立的x的取值范圍是2≤x<3;
②函數(shù)F(x)的定義域為R,值域為[0,1];
③F(
2013
2014
)+F(
20132
2014
)+F(
20133
2014
)+…+F(
20132014
2014
)=1007;
④設函數(shù)G(x)=
F(x)         x≥0
G(x+1)    x<0
,則函數(shù)y=G(x)-|sinx|,x∈[-π,π]的不同零點有7個.
其中正確的命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在復數(shù)集C上的函數(shù)f(x)=
x-i ,x∈R
1
x
 ,x∉R
,則f(f(1))在復平面內(nèi)對應的點位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程mx2-(2m+1)x+m=0有兩相異實根,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算cos60°=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若0<α<
π
2
,0<β<
π
2
,且cosα=
7
2
10
,tanβ=
4
3
,則α+β=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算:a*b=
a,a≤b
b,a>b.
,如1*2=1,則函數(shù)f(x)=cosx*sinx的值域為( 。
A、[-1,
2
2
]
B、[-1,1]
C、[
2
2
,1]
D、[-
2
2
,
2
2
]

查看答案和解析>>

同步練習冊答案