【題目】某工廠有兩臺不同機器和生產(chǎn)同一種產(chǎn)品各萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價標準規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到的產(chǎn)品,質(zhì)量等級為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)完成下列列聯(lián)表,以產(chǎn)品等級是否達到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過的情況下,認為機器生產(chǎn)的產(chǎn)品比機器生產(chǎn)的產(chǎn)品好;
生產(chǎn)的產(chǎn)品 | 生產(chǎn)的產(chǎn)品 | 合計 | |
良好以上(含良好) | |||
合格 | |||
合計 |
(
(3)已知優(yōu)秀等級產(chǎn)品的利潤為元/件,良好等級產(chǎn)品的利潤為元/件,合格等級產(chǎn)品的利潤為元/件,機器每生產(chǎn)萬件的成本為萬元,機器每生產(chǎn)萬件的成本為萬元;該工廠決定:按樣本數(shù)據(jù)測算,若收益之差不超過萬元,則仍然保留原來的兩臺機器.你認為該工廠會仍然保留原來的兩臺機器嗎?
附:1.獨立性檢驗計算公式:.
2.臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【答案】(1)列聯(lián)表見解析;不能; (2)0.139825 (3)不會仍然保留原來的兩臺機器,應該會賣掉機器,同時購買一臺機器;
【解析】
(1)根據(jù)已有的數(shù)據(jù)完成列聯(lián)表,計算的值,根據(jù)參照數(shù)據(jù)下結(jié)論.
(2)根據(jù)莖葉圖,利用頻率代替概率,得到任取一件產(chǎn)品是機器生產(chǎn)的優(yōu)等品的概率,任取一件產(chǎn)品是機器生產(chǎn)的優(yōu)等品的概率,記“件產(chǎn)品中機器生產(chǎn)的優(yōu)等品的數(shù)量多于機器生產(chǎn)的優(yōu)等品的數(shù)量”為事件,分A取1件,B取0件,A取2件,B至多取1件優(yōu)等品兩類計算.
(3)根據(jù)期望公式,算出機器每生產(chǎn)萬件的利潤和機器每生產(chǎn)萬件的利潤,根據(jù)利潤差與5比較下結(jié)論.
(1)由已知可得,列聯(lián)表為
生產(chǎn)的產(chǎn)品 | 生產(chǎn)的產(chǎn)品 | 合計 | |
良好以上 | 6 | 12 | 18 |
合格 | 14 | 8 | 22 |
合計 | 20 | 20 | 40 |
,
所以不能在誤差不超過的情況下,認為產(chǎn)品等級是否達到良好以上與生產(chǎn)產(chǎn)品的機器有關.
(2)由題意知,任取一件產(chǎn)品是機器生產(chǎn)的優(yōu)等品的概率為,
任取一件產(chǎn)品是機器生產(chǎn)的優(yōu)等品的概率為.
記“件產(chǎn)品中機器生產(chǎn)的優(yōu)等品的數(shù)量多于機器生產(chǎn)的優(yōu)等品的數(shù)量”為事件,
則
(3)機器每生產(chǎn)萬件的利潤為萬元,
機器每生產(chǎn)萬件的利潤為萬元,
所以,
所以該工廠不會仍然保留原來的兩臺機器,應該會賣掉機器,同時購買一臺機器.
科目:高中數(shù)學 來源: 題型:
【題目】有關獨立性檢驗的四個命題,其中正確的是( )
A.兩個變量的2×2列聯(lián)表中,對角線上數(shù)據(jù)的乘積相差越大,說明兩個變量有關系成立的可能性就越大
B.對分類變量X與Y的隨機變量的觀測值k來說,k越小,“X與Y有關系”的可信程度越小
C.從獨立性檢驗可知:有95%的把握認為禿頂與患心臟病有關,我們說某人禿頂,那么他有95%的可能患有心臟病
D.從獨立性檢驗可知:有99%的把握認為吸煙與患肺癌有關,是指在犯錯誤的概率不超過1%的前提下認為吸煙與患肺癌有關
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠加工產(chǎn)品的工人的年齡構(gòu)成和相應的平均正品率如下表:
年齡(單位:歲) | ||||
人數(shù)比例 | 0.3 | 0.4 | 0.2 | 0.1 |
平均正品率 | 85% | 95% | 80% | 70% |
(1)畫出該工廠加工產(chǎn)品的工人的年齡頻率分布直方圖;
(2)估計該工廠工人加工產(chǎn)品的平均正品率;
(3)該工廠想確定一個轉(zhuǎn)崗年齡歲,到達這個年齡的工人不再加工產(chǎn)品,轉(zhuǎn)到其他崗位,為了使剩余工人加工產(chǎn)品的平均正品率不低于90%,若年齡在同一區(qū)間內(nèi)的工人加工產(chǎn)品的正品率都取相應區(qū)間的平均正品率,則估計最高可定為多少歲?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列結(jié)論:在回歸分析中
(1)可用相關指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(2)可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)可用相關系數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(4)可用殘差圖判斷模型的擬合效果,殘差點比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.
以上結(jié)論中,不正確的是( )
A.(1)(3)B.(2)(3)C.(1)(4)D.(3)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】實驗中學從高二級部中選拔一個班級代表學校參加“學習強國知識大賽”,經(jīng)過層層選拔,甲、乙兩個班級進入最后決賽,規(guī)定回答1個相關問題做最后的評判選擇由哪個班級代表學校參加大賽.每個班級6名選手,現(xiàn)從每個班級6名選手中隨機抽取3人回答這個問題已知這6人中,甲班級有4人可以正確回答這道題目,而乙班級6人中能正確回答這道題目的概率每人均為,甲、乙兩班級每個人對問題的回答都是相互獨立,互不影響的.
(1)求甲、乙兩個班級抽取的6人都能正確回答的概率;
(2)分別求甲、乙兩個班級能正確回答題目人數(shù)的期望和方差、,并由此分析由哪個班級代表學校參加大賽更好?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設X~N(μ1,),Y~N(μ2,),這兩個正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 ( )
A. P(Y≥μ2)≥P(Y≥μ1)
B. P(X≤σ2)≤P(X≤σ1)
C. 對任意正數(shù)t,P(X≥t)≥P(Y≥t)
D. 對任意正數(shù)t,P(X≤t)≥P(Y≤t)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】出版商為了解某科普書一個季度的銷售量(單位:千本)和利潤(單位:元/本)之間的關系,對近年來幾次調(diào)價之后的季銷售量進行統(tǒng)計分析,得到如下的10組數(shù)據(jù).
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2.4 | 3.1 | 4.6 | 5.3 | 6.4 | 7.1 | 7.8 | 8.8 | 9.5 | 10 | |
18.1 | 14.1 | 9.1 | 7.1 | 4.8 | 3.8 | 3.2 | 2.3 | 2.1 | 1.4 |
根據(jù)上述數(shù)據(jù)畫出如圖所示的散點圖:
(1)根據(jù)圖中所示的散點圖判斷和哪個更適宜作為銷售量關于利潤的回歸方程類型?(給出判斷即可,不需要說明理由)
(2)根據(jù)(1)中的判斷結(jié)果及參考數(shù)據(jù),求出關于的回歸方程;
(3)根據(jù)回歸方程預測當每本書的利潤為10.5元時的季銷售量.
參考公式及參考數(shù)據(jù):
①對于一組數(shù)據(jù),其回歸直線的斜率和截距的公式分別為.
②參考數(shù)據(jù):
6.50 | 6.60 | 1.75 | 82.50 | 2.70 |
表中.另:.計算時,所有的小數(shù)都精確到0.01.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.
(1)求曲線的極坐標方程,并化為直角坐標方程;
(2)若點,直線的參數(shù)方程(為參數(shù)),直線與曲線的交點為,當取最小值時,求直線的普通方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com