【題目】某工廠加工產(chǎn)品的工人的年齡構(gòu)成和相應(yīng)的平均正品率如下表:

年齡(單位:歲)

人數(shù)比例

0.3

0.4

0.2

0.1

平均正品率

85%

95%

80%

70%

1)畫出該工廠加工產(chǎn)品的工人的年齡頻率分布直方圖;

2)估計該工廠工人加工產(chǎn)品的平均正品率;

3)該工廠想確定一個轉(zhuǎn)崗年齡歲,到達這個年齡的工人不再加工產(chǎn)品,轉(zhuǎn)到其他崗位,為了使剩余工人加工產(chǎn)品的平均正品率不低于90%,若年齡在同一區(qū)間內(nèi)的工人加工產(chǎn)品的正品率都取相應(yīng)區(qū)間的平均正品率,則估計最高可定為多少歲?

【答案】1)年齡頻率分布直方圖見解析;(2;(3)最高可定為42.5

【解析】

1)利用已知數(shù)據(jù)繪圖即可.

2)直接利用均值公式計算得解.

3)利用已知及均值公式列方程可得:,解方程即可.

1)該工廠加工產(chǎn)品的工人的年齡頻率分布直方圖如下

2)估計該工廠工人加工產(chǎn)品的平均正品率為

3)因為,,

,

所以為了使剩余工人加工產(chǎn)品的平均正品率不低于90%,估計最高可定為42.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB4,AD2,點EDC的中點,將△ADE沿AE折起,使平面ADE⊥平面ABCE,連結(jié)DB、DC、EB

1)求證:平面ADE⊥平面BDE

2)求AD與平面BDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】受傳統(tǒng)觀念的影響,中國家庭教育過程中對子女教育的投入不遺余力,基礎(chǔ)教育消費一直是中國家庭教育的重頭戲,升學(xué)壓力的逐漸增大,特別是對于升入重點學(xué)校的重視,導(dǎo)致很多家庭教育支出增長較快,下面是某機構(gòu)隨機抽樣調(diào)查某二線城市2012-2018年的家庭教育支出的折線圖.

(附:年份代碼1-7分別對應(yīng)的年份是2012-2018

1)從圖中的折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請求出相關(guān)系數(shù)r(精確到0.001),并指出是哪一層次的相關(guān)性?(相關(guān)系數(shù),相關(guān)性很強;,相關(guān)性一般;,相關(guān)性較弱).

2)建立y關(guān)于t的回歸方程;

3)若2019年該地區(qū)家庭總支出為10萬元,預(yù)測家庭教育支出約為多少萬元?

附注:參考數(shù)據(jù):,,.

參考公式:,回歸方程,

其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個人的出生年份對應(yīng)了十二種動物中的一種,即自己的屬相.現(xiàn)有印著十二生肖圖案的毛絨娃娃各一個,小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這十二個毛絨娃娃中各隨機取一個(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每個國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對延遲退休的態(tài)度,現(xiàn)從某地市民中隨機選取100人進行調(diào)查,調(diào)查情況如下表:

年齡段(單位:歲)

被調(diào)查的人數(shù)

贊成的人數(shù)

1)從贊成延遲退休的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)若從年齡在的參與調(diào)查的市民中按照是否贊成延遲退休進行分層抽樣,從中抽取10人參與某項調(diào)查,然后再從這10人中隨機抽取4人參加座談會,記這4人中贊成延遲退休的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,bc,已知a=bcosC+csinB.

)求B

)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,不等式的解集是.

1)求的解析式;

2)不等式組的正整數(shù)解只有一個,求實數(shù)k取值范圍;

3)若對于任意,不等式恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有兩臺不同機器生產(chǎn)同一種產(chǎn)品各萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:

該產(chǎn)品的質(zhì)量評價標(biāo)準(zhǔn)規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到的產(chǎn)品,質(zhì)量等級為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

1)完成下列列聯(lián)表,以產(chǎn)品等級是否達到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過的情況下,認(rèn)為機器生產(chǎn)的產(chǎn)品比機器生產(chǎn)的產(chǎn)品好;

生產(chǎn)的產(chǎn)品

生產(chǎn)的產(chǎn)品

合計

良好以上(含良好)

合格

合計

2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,從兩臺不同機器生產(chǎn)的產(chǎn)品中各隨機抽取件,求件產(chǎn)品中機器生產(chǎn)的優(yōu)等品的數(shù)量多于機器生產(chǎn)的優(yōu)等品的數(shù)量的概率;

3)已知優(yōu)秀等級產(chǎn)品的利潤為/件,良好等級產(chǎn)品的利潤為/件,合格等級產(chǎn)品的利潤為/件,機器每生產(chǎn)萬件的成本為萬元,機器每生產(chǎn)萬件的成本為萬元;該工廠決定:按樣本數(shù)據(jù)測算,若收益之差不超過萬元,則仍然保留原來的兩臺機器.你認(rèn)為該工廠會仍然保留原來的兩臺機器嗎?

附:1.獨立性檢驗計算公式:.

2.臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的極值;

2)設(shè)函數(shù),若函數(shù)恰有一個零點,求函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案