【題目】為了更好地了解鯨的生活習性,某動物保護組織在受傷的鯨身上安裝了電子監(jiān)測設備,從海岸線放歸點處把它放歸大海,并沿海岸線由西到東不停地對其進行跟蹤觀測。在放歸點的正東方向有一觀測站,可以對鯨進行生活習性的詳細觀測。已知,觀測站的觀測半徑為.現(xiàn)以點為坐標原點、以由西向東的海岸線所在直線為軸建立平面直角坐標系,則可以測得鯨的行進路線近似的滿足.

(1)若測得鯨的行進路線上一點,的值;

(2)在(1)問的條件下,問:

當鯨運動到何處時,開始進入觀測站的觀測區(qū)域內?(計算結果精確到0.1)

當鯨運動到何處時,離觀測站距離最近觀測最便利)?(計算結果精確到0.1)

(參考數(shù)據(jù):

【答案】(1)(2)①

【解析】

(1)代入解析式即可求出(2)聯(lián)立圓與鯨魚運行軌跡方程即可求出進入觀測區(qū)域的點利用兩點間距離表示出鯨魚與觀測站的距離,配方求最值即可.

(1)A(1,1)代入,可得

(2)①

當鯨運動到點 處,開始進入觀測站的觀測區(qū)域內。

②鯨與點的距離為

最小。

當鯨運動到點 處時,鯨離觀測站距離最近。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,該幾何體是由一個直三棱柱ADE﹣BCF和一個正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡營銷和電子商務的興起,人們的購物方式更具多樣化,某調查機構隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.
(1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;
(2)若從這10名購物者中隨機抽取3名,設X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的各項均為正數(shù),其前n項和為Sn , 已知 =1,且a1= ,則tanSn的取值集合是(
A.{0, }
B.{0, , }
C.{0, ,﹣ }
D.{0, ,﹣ }

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:“有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于20尺,該女子所需的天數(shù)至少為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣4|,g(x)=a|x|,a∈R.
(Ⅰ)當a=2時,解關于x的不等式f(x)>2g(x)+1;
(Ⅱ)若不等式f(x)≥g(x)﹣4對任意x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}前n項和為Sn , 且 (n∈N*).
(Ⅰ) 求c,an;
(Ⅱ) 若 ,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義區(qū)間[x1 , x2]的長度為x2﹣x1(x2>x1)單調遞增),函數(shù) (a∈R,a≠0)的定義域與值域都是[m,n](n>m),則區(qū)間[m,n]取最大長度時實數(shù)a的值(
A.
B.﹣3
C.1
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是 ( )

A. 的充分不必要條件;

B. 如果命題與命題pq都是真命題,那么命題一定是真命題.

C. 若命題p,則;

D. 命題,則的否命題是:,則

查看答案和解析>>

同步練習冊答案