兩圓x2+y2+6x-4y=0和x2+y2-6x+12y-19=0的位置關(guān)系是( 。
A、外切B、內(nèi)切C、相交D、外離
考點(diǎn):圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:分別求出兩圓的圓心和半徑,利用圓心距和半徑之和與半徑這差的絕對(duì)值的位置關(guān)系能求出兩圓的位置關(guān)系.
解答: 解:∵圓x2+y2+6x-4y=0的圓心O1(-3,2),半徑r1=
1
2
36+16
=2
13

圓x2+y2-6x+12y-19=0的圓心O2(3,-6),半徑r2=
1
2
36+144+76
=4,
|O1O2|=
(3+3)2+(-6-2)2
=10,
∴|r1-r2|<|O1O2|<r1+r2,
∴兩圓相交.
故選:C.
點(diǎn)評(píng):本題考查兩圓的位置關(guān)系的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意兩點(diǎn)間距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓M圓心在x軸上,與x軸的一個(gè)交點(diǎn)為A(-2,0),與y軸的一個(gè)交點(diǎn)為B(0,-2
2
),點(diǎn)P是OA的中點(diǎn).若過P點(diǎn)的直線l截圓M所得的弦長(zhǎng)為2
6
,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線a、b、c與平面α.給出:
①a⊥c,b⊥c⇒a∥b;
②a∥c,b∥c⇒a∥b;
③a∥α,b∥α⇒a∥b;
④a⊥α,b⊥α⇒a∥b.
其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在實(shí)數(shù)集R上的偶函數(shù),且滿足f(x-1)=-f(x),則方程f(x)=0在區(qū)間[-2,2]內(nèi)至少有( 。﹤(gè)解.
A、3B、4C、5D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=2sin(ωx+θ)對(duì)任意x都有f(
π
6
+x)=f(
π
6
-x),則f(
π
6
)=(  )
A、2或0B、-2或2
C、0D、-2或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的個(gè)數(shù)為( 。
①梯形可以確定一個(gè)平面;
②若兩條直線和第三條直線所成的角相等,則這兩條直線平行;
③兩兩相交的三條直線最多可以確定三個(gè)平面;
④如果兩個(gè)平面有三個(gè)公共點(diǎn),則這兩個(gè)平面重合.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x,y)為函數(shù)y=1+lnx圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線OP的斜率k=f(x).
(Ⅰ)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)上存在極值,求實(shí)數(shù)a的取值范圍;
(Ⅱ)如果對(duì)任意的x1,x2∈[e2,+∞),有|f(x1)-f(x2)|≥m|
1
x1
-
1
x2
|,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二元一次不等式組
x+y≤4
y≥x
x≥1
對(duì)應(yīng)的平面區(qū)域?yàn)镸
(1)若點(diǎn)P(x,y)是區(qū)域M內(nèi)的任意一點(diǎn),求目標(biāo)函數(shù)Z=
y-1
x
的最大值;
(2)若點(diǎn)P(x,y)是區(qū)域M內(nèi)的任意一點(diǎn),求點(diǎn)P滿足條件(x-1)2+(y-1)2≤1的概率;
(3)若點(diǎn)Q(x,y)是不等式組
1≤x≤2
0≤y≤2
表示的區(qū)域內(nèi)的任意一點(diǎn),求點(diǎn)Q落在區(qū)域M內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2x+
3
sinxcosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當(dāng)x[-
π
12
π
12
]時(shí),求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案