已知直線a、b、c與平面α.給出:
①a⊥c,b⊥c⇒a∥b;
②a∥c,b∥c⇒a∥b;
③a∥α,b∥α⇒a∥b;
④a⊥α,b⊥α⇒a∥b.
其中正確命題的個數(shù)是( 。
A、1B、2C、3D、4
考點:命題的真假判斷與應(yīng)用
專題:閱讀型,空間位置關(guān)系與距離
分析:①由空間兩直線的位置關(guān)系,即可判斷;
②由公理4,即可判斷;
③由線面平行的性質(zhì)和線線位置關(guān)系,即可判斷;
④由線面垂直的性質(zhì)定理:同垂直于一個平面的兩直線平行,即可判斷.
解答: 解:①若a⊥c,b⊥c,則a,b平行、相交或異面,故①錯;
②若a∥c,b∥c,由公理4,可得a∥b,故②對;
③若a∥α,b∥α,則a、b平行、相交或異面,故③錯;
④由于a⊥α,b⊥α,由線面垂直的性質(zhì)定理得,a∥b.故④對.
故選B.
點評:本題考查空間直線與平面的位置關(guān)系,考查線線、線面位置關(guān)系,主要是平行、垂直,記熟這些定理收迅速解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用列舉法表示集合A={x|
2
x+1
∈Z,x∈Z}=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(a,b,c)關(guān)于xOy平面的對稱點的坐標為( 。
A、(a,b,-c)
B、(-a,b,c)
C、(a,-b,c)
D、(-a,-b,c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程|x2-6x+8|=1實根的個數(shù)為(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x3
3
-
a
2
x2+x+1在區(qū)間(
1
2
,3)上有極值點,則實數(shù)a的取值范圍是( 。
A、(2,
5
2
B、[2,
5
2
C、(2,
10
3
D、[2,
10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lgx-
1
2
x2+1(x>0),則f(x)(  )
A、在區(qū)間(0,1)和(1,2)內(nèi)均沒有零點
B、在區(qū)間(0,1)內(nèi)沒有零點,而在區(qū)間(1,2)內(nèi)有零點
C、在區(qū)間(1,2)內(nèi)沒有零點,而在區(qū)間(0,1)內(nèi)有零點
D、在區(qū)間(0,1)和(1,2)內(nèi)均有零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題中,正確的命題為( 。
A、|
a
|-|
b
|<|
a
+
b
|是
a
、
b
不共線的充要條件
B、(
a
b
)•
c
=
b
•(
a
b
)=(
b
c
)•
a
C、向量
a
在向量
b
方向上的射影向量的模為|
a
|•cos<
a
,
b
D、在四面體ABCD中,若
AB
CD
=0,
AC
BD
=0,則
AD
BC
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩圓x2+y2+6x-4y=0和x2+y2-6x+12y-19=0的位置關(guān)系是(  )
A、外切B、內(nèi)切C、相交D、外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明函數(shù)f(x)=
1
x-2
在(2,+∞)上是減函數(shù).

查看答案和解析>>

同步練習(xí)冊答案