1.若tanα=2,則$\frac{sinα-cosα}{sinα+cosα}$的值為$\frac{1}{3}$.

分析 利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.

解答 解:∵tanα=2,∴$\frac{sinα-cosα}{sinα+cosα}$=$\frac{tanα-1}{tanα+1}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.歐陽修在《賣油翁》中寫到:“(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕”,可見賣油翁的技藝之高超,若銅錢直徑2百米,中間有邊長為1百米的正方形小孔,隨機(jī)向銅錢上滴一滴油(油滴大小忽略不計(jì)),則油恰好落入孔中的概率是( 。
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.盒子中有大小形狀完全相同的4個紅球和3個白球,從中不放回的一次摸出兩個球,在第一次摸出的是紅球的前提下,第二次也摸出紅球的概率為( 。
A.$\frac{2}{7}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)方程$\frac{x^2}{m+2}-\frac{y^2}{2m-1}=1$表示雙曲線,則實(shí)數(shù)m的取值范圍是(-∞,-2)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在北緯60°的緯度圈上,有甲、乙兩地,兩地間緯度圈上的弧長等于$\frac{πR}{4}$(R為地球半徑),則這兩地的球面距離是R$arccos\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若直線l的方向向量$\overrightarrow a=(1,1,1)$,平面α的一個法向量$\overrightarrow n=(2,-1,1)$,則直線l與平面α所成角的正弦值等于$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知全集U=R,集合M=$\left\{{x\left|{\frac{2-x}{x+3}}\right.<0}\right\}$,則∁RM={x|-3≤x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=log0.5(x-1)x∈[3,5],
(1)設(shè)g(x)=f-1(x),求g(x)的解析式;
(2)是否存在實(shí)數(shù)m,使得關(guān)于x的不等式2xg(2x)-mg(x)+1≤0有解?若存在,求m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.方程log3x+x-3=0的解所在區(qū)間是(k,k+1)(k∈Z),則k=2.

查看答案和解析>>

同步練習(xí)冊答案