10.歐陽修在《賣油翁》中寫到:“(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕”,可見賣油翁的技藝之高超,若銅錢直徑2百米,中間有邊長為1百米的正方形小孔,隨機(jī)向銅錢上滴一滴油(油滴大小忽略不計(jì)),則油恰好落入孔中的概率是( 。
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

分析 本題考查的知識點(diǎn)是幾何概型的意義,關(guān)鍵是要求出銅錢面積的大小和中間正方形孔面積的大小,然后代入幾何概型計(jì)算公式進(jìn)行求解.

解答 解:∵S=1,S
∴P=$\frac{1}{π}$,
故選:C.

點(diǎn)評 幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對應(yīng)的“幾何度量”N(A),再求出總的基本事件對應(yīng)的“幾何度量”N,最后根據(jù)幾何概率的公式求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知sin($\frac{π}{6}$-α)+cos($\frac{π}{6}$-α)=$\frac{\sqrt{5}}{5}$,則cos($\frac{π}{6}$+2α)=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某學(xué)校隨機(jī)抽取部分學(xué)生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)制成頻率分布直方圖(如圖),若上學(xué)路上所需時(shí)間的范圍為[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中a的值;
(2))如果上學(xué)路上所需時(shí)間不少于40分鐘的學(xué)生可申請?jiān)趯W(xué)校住宿,若招收學(xué)生1200人,請估計(jì)所招學(xué)生中有多少人可以申請住宿;
(3)求該校學(xué)生上學(xué)路上所需的平均時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=45,那么a5等于( 。
A.4B.5C.9D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳不喜歡游泳合計(jì)
男生10
女生20
合計(jì)
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為$\frac{3}{5}$.
(1)請將上述列聯(lián)表補(bǔ)充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(2)針對于問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取6人成立游泳科普知識宣傳組,并在這6人中任選2人作為宣傳組的組長,設(shè)這兩人中男生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳不喜歡游泳合計(jì)
男生10
女生20
合計(jì)
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為$\frac{3}{5}$.
(1)請將上述列聯(lián)表補(bǔ)充完整;
(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=ln$\frac{3x}{2}$-$\frac{2}{x}$的零點(diǎn)一定位于區(qū)間(  )
A.(0,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若tanα=2,則$\frac{sinα-cosα}{sinα+cosα}$的值為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案