(2009•普陀區(qū)一模)無窮等比數(shù)列{an}的首項(xiàng)為3,公比q=-
1
3
,則{an}的各項(xiàng)和S=
9
4
9
4
分析:由題意可得S=
lim
n→∞
Sn
=
a1
1-q
,代入可求S的值
解答:解:由題意可得S=
lim
n→∞
Sn
=
a1
1-q
=
3
1+
1
3
=
9
4

故答案為:
9
4
點(diǎn)評:本題主要考查了等比數(shù)列的前n項(xiàng)和 極限的求解,要注意各項(xiàng)和不是前n項(xiàng)和,而是前n項(xiàng)和的極限,不要混淆的兩者不同的概念
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)拋物線y2+8x=0的焦點(diǎn)坐標(biāo)為
(-2,0)
(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)設(shè)函數(shù)f(x)=lg(x2-x-2)的定義域?yàn)榧螦,函數(shù)g(x)=
3
x
-1
的定義域?yàn)榧螧.已知α:x∈A∩B,β:x滿足2x+p<0,且α是β的充分條件,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)函數(shù)y=2cos2x+sin2x,x∈R的最大值是
2
+1
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)
lim
n→∞
2n2+1
1+3+5+…+(2n-1)
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)設(shè)F1,F(xiàn)2分別是橢圓
x2
9
+
y2
4
=1
的左、右焦點(diǎn).若點(diǎn)P在橢圓上,且|
PF1
+
PF2
|=2
5
,則向量
PF1
與向量
PF2
的夾角的大小為
90°
90°

查看答案和解析>>

同步練習(xí)冊答案