【題目】已知三棱臺的下底面是邊長為2的正三角形,上地面是邊長為1的正三角形.在下底面的射影為的重心,且.

1)證明:平面;

2)求直線與平面所成角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)利用線面垂直的判定定理及性質(zhì)證明,或者建立空間直角坐標系,利用向量的數(shù)量積為0證明;

2)運用綜合法求直線與平面所成的角應先確定該平面的垂線,即可求解,或者建立空間直角坐標系,利用空間向量的夾角公式求解.

解法一:(1)證明:記的重心為,連接并延長交于點.

因為底面為正三角形,則,

又點在底面上的射影為,

所以平面,則,

因為,所以平面

平面,所以.

,且

所以平面,

因此,平面.

2)由于為棱臺,

設三側(cè)棱延長交于一點.

因為,

,分別為棱,的中點.

為正的重心,

.

因為平面,

,

故在中,,

由三角形相似,得

.

的中點,連接,,

,且,

平面

即為直線與平面所成的角.

,

所以,

,所以,

,

所以

即直線與平面所成角的正弦值為.

解法二:以重心為原點,直線,分別為軸建立如圖所示的空間直角坐標系.

,,

,則,

,.

1)證明:由

,

,

,

所以平面.

2)由

,

所以.

設平面的法向量為,

因為,,

所以有,

,則,所以.

設直線與平面所成的角為,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面內(nèi),已知,過直線,分別作平面,使銳二面角,銳二面角,則平面與平面所成的銳二面角的余弦值為( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCDEFGH的一個截面經(jīng)過頂點A、C及棱EF上一點K,且將正方體分成體積比為31的兩部分,則的值為______ .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點F是拋物線Cy22pxp0)的焦點,過點F的直線與拋物線相交于A,B兩點(點Ax軸上方),與y軸的正半軸相交于點N,點Q是拋物線不同于A,B的點,若2,則|BF||BA||BN|_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為其導函數(shù).

)當時,求函數(shù)的極值;

)設,當時,對任意的,都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(I)判斷曲線在點處的切線與曲線的公共點個數(shù);

(II)若函數(shù)有且僅有一個零點,求的值;

(III)若函數(shù)有兩個極值點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為上一點.

(1)求橢圓的方程;

(2)設分別關于兩坐標軸及坐標原點的對稱點,平行于的直線于異于的兩點.點關于原點的對稱點為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)若在定義域內(nèi)單調(diào)遞增,求的取值范圍;

)若存在極大值點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=Acosωx)(A0,ω0,0φπ)的圖象的一個最高點為(),與之相鄰的一個對稱中心為,將fx)的圖象向右平移個單位長度得到函數(shù)gx)的圖象,則(

A.gx)為偶函數(shù)

B.gx)的一個單調(diào)遞增區(qū)間為

C.gx)為奇函數(shù)

D.函數(shù)gx)在上有兩個零點

查看答案和解析>>

同步練習冊答案